Unknown

Dataset Information

0

Fast lightweight accurate xenograft sorting.


ABSTRACT:

Motivation

With an increasing number of patient-derived xenograft (PDX) models being created and subsequently sequenced to study tumor heterogeneity and to guide therapy decisions, there is a similarly increasing need for methods to separate reads originating from the graft (human) tumor and reads originating from the host species' (mouse) surrounding tissue. Two kinds of methods are in use: On the one hand, alignment-based tools require that reads are mapped and aligned (by an external mapper/aligner) to the host and graft genomes separately first; the tool itself then processes the resulting alignments and quality metrics (typically BAM files) to assign each read or read pair. On the other hand, alignment-free tools work directly on the raw read data (typically FASTQ files). Recent studies compare different approaches and tools, with varying results.

Results

We show that alignment-free methods for xenograft sorting are superior concerning CPU time usage and equivalent in accuracy. We improve upon the state of the art sorting by presenting a fast lightweight approach based on three-way bucketed quotiented Cuckoo hashing. Our hash table requires memory comparable to an FM index typically used for read alignment and less than other alignment-free approaches. It allows extremely fast lookups and uses less CPU time than other alignment-free methods and alignment-based methods at similar accuracy. Several engineering steps (e.g., shortcuts for unsuccessful lookups, software prefetching) improve the performance even further.

Availability

Our software xengsort is available under the MIT license at http://gitlab.com/genomeinformatics/xengsort . It is written in numba-compiled Python and comes with sample Snakemake workflows for hash table construction and dataset processing.

SUBMITTER: Zentgraf J 

PROVIDER: S-EPMC8017614 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC9750101 | biostudies-literature
| S-EPMC7320612 | biostudies-literature
| S-EPMC10825225 | biostudies-literature
| S-EPMC4256106 | biostudies-literature
| S-EPMC10932608 | biostudies-literature
| S-EPMC4221126 | biostudies-literature
| S-EPMC7002296 | biostudies-literature
| S-EPMC6298048 | biostudies-literature
| S-EPMC3436849 | biostudies-literature
| S-EPMC6933638 | biostudies-literature