Project description:Malignant hematopoietic cells gain metabolic plasticity, reorganize anabolic mechanisms to improve anabolic output and prevent oxidative damage, and bypass cell cycle checkpoints, eventually outcompeting normal hematopoietic cells. Current therapeutic strategies of acute myeloid leukemia (AML) are based on prognostic stratification that includes mutation profile as the closest surrogate to disease biology. Clinical efficacy of targeted therapies, e.g., agents targeting mutant FMS-like tyrosine kinase 3 (FLT3) and isocitrate dehydrogenase 1 or 2, are mostly limited to the presence of relevant mutations. Recent studies have not only demonstrated that specific mutations in AML create metabolic vulnerabilities but also highlighted the efficacy of targeting metabolic vulnerabilities in combination with inhibitors of these mutations. Therefore, delineating the functional relationships between genetic stratification, metabolic dependencies, and response to specific inhibitors of these vulnerabilities is crucial for identifying more effective therapeutic regimens, understanding resistance mechanisms, and identifying early response markers, ultimately improving the likelihood of cure. In addition, metabolic changes occurring in the tumor microenvironment have also been reported as therapeutic targets. The metabolic profiles of leukemia stem cells (LSCs) differ, and relapsed/refractory LSCs switch to alternative metabolic pathways, fueling oxidative phosphorylation (OXPHOS), rendering them therapeutically resistant. In this review, we discuss the role of cancer metabolic pathways that contribute to the metabolic plasticity of AML and confer resistance to standard therapy; we also highlight the latest promising developments in the field in translating these important findings to the clinic and discuss the tumor microenvironment that supports metabolic plasticity and interplay with AML cells.
Project description:Despite the approval of several drugs for AML, cytarabine is still widely used as a therapeutic approach. However, 85% of patients show resistance and only 10% overcome the disease. Using RNA-seq and phosphoproteomics, we show that RNA splicing and serine-arginine-rich (SR) proteins phosphorylation were altered during cytarabine resistance. Moreover, phosphorylation of SR proteins at diagnosis were significantly lower in responder than non-responder patients, pointing to their utility to predict response. These changes correlated with altered transcriptomic profiles of SR protein target genes. Notably, splicing inhibitors were therapeutically effective in treating sensitive and resistant AML cells as monotherapy or combination with other approved drugs. H3B-8800 and venetoclax combination showed the best efficacy in vitro, demonstrating synergistic effects in patient samples and no toxicity in healthy hematopoietic progenitors. Our results establish that RNA splicing inhibition, alone or combined with venetoclax, could be useful for the treatment of newly diagnosed or relapsed/refractory AML.
Project description:BackgroundChildren with Down syndrome (DS) have increased risk for developing AML (DS-AMKL), and they usually experience severe therapy-related toxicities compared to non DS-AMKL. Refractory/relapsed disease has very poor outcome, and patients would benefit from novel, less toxic, therapeutic strategies that overcome resistance. Relapse/resistance are linked to cancer stem cells with high aldehyde dehydrogenase (ALDH) activity. The purpose of the present work was to study less toxic alternative therapeutic agents for relapsed/refractory DS-AMKL.MethodsFourteen AML cell lines including the DS-AMKL CMY and CMK from relapsed/refractory AML were used. Cytarabine (Ara-C), bortezomib (BTZ), disulfiram/copper (DSF/Cu2+) were evaluated for cytotoxicity, depletion of ALDH-positive cells, and resistance. BTZ-resistant CMY and CMK variants were generated by continuous BTZ treatment. Cell viability was assessed using CellTiter-Glo®, ALDH activity by ALDELUORTM, and proteasome inhibition by western blot of ubiquitinated proteins and the Proteasome-Glo™ Chymotrypsin-Like (CT-like) assay, apoptosis by Annexin V Fluos/Propidium iodide staining, and mutations were detected using PCR, cloning and sequencing.ResultsAra-C-resistant AML cell lines were sensitive to BTZ and DSF/Cu2+. The Ara-C-resistant DS-AMKL CMY cells had a high percentage of ALDHbright "stem-like" populations that may underlie Ara-C resistance. One percent of these cells were still resistant to BTZ but sensitive to DSF/Cu2+. To understand the mechanism of BTZ resistance, BTZ resistant (CMY-BR) and (CMK-BR) were generated. A novel mutation PSMB5 Q62P underlied BTZ resistance, and was associated with an overexpression of the β5 proteasome subunit. BTZ-resistance conferred increased resistance to Ara-C due to G1 arrest in the CMY-BR cells, which protected the cells from S-phase damage by Ara-C. CMY-BR and CMK-BR cells were cross-resistant to CFZ and MG-132 but sensitive to DSF/Cu2+. In this setting, DSF/Cu2+ induced apoptosis and proteasome inhibition independent of CT-like activity inhibition.ConclusionsWe provide evidence that DSF/Cu2+ overcomes Ara-C and BTZ resistance in cell lines from DS-AMKL patients. A novel mutation underlying BTZ resistance was detected that may identify BTZ-resistant patients, who may not benefit from treatment with CFZ or Ara-C, but may be responsive to DSF/Cu2+. Our findings support the clinical development of DSF/Cu2+ as a less toxic efficacious treatment approach in patients with relapsed/refractory DS-AMKL.
Project description:Acute myeloid leukemia patients with FMS-like tyrosine kinase 3-internal tandem duplications and mixed lineage leukemia-protein AF9 fusion proteins suffer from poor clinical outcomes. The MOLM-13 acute myeloid leukemia cell line harbors both of these abnormalities and is used in CRISPR experiments to identify disease drivers. However, experimental observations may be biased or inconclusive in the absence of experimentally validated positive control genes. We validated sgRNAs for knockdown of TP53 for cell proliferation and for DCK knockdown and CDA upregulation for cytarabine resistance control genes in MOLM-13 cells. We have provided a detailed CRISPR protocol applicable to both gene knockdown or activation experiments and downstream leukemic phenotype analyses. Inclusion of these controls in CRISPR experiments will enhance the capacity to identify novel myeloid leukemia drivers in MOLM-13 cells.
Project description:The over-expression of the Bcl-2 protein is a common feature of many solid cancers and hematological malignancies, and it is typically associated with poor prognosis and resistance to chemotherapy. Bcl-2-specific inhibitors, such as venetoclax, have recently been approved for the treatment of chronic lymphocytic leukemia and small lymphocytic lymphoma, and they are showing promise in clinical trials as a targeted therapy for patients with relapsed or refractory acute myeloid leukemia (AML). However, successful treatment of AML with Bcl-2-specific inhibitors is often followed by the rapid development of drug resistance. An emerging paradigm for overcoming drug resistance in cancer treatment is through the targeting of mitochondrial energetics and metabolism. In AML in particular, it was recently observed that inhibition of mitochondrial translation via administration of the antibiotic tedizolid significantly affects mitochondrial bioenergetics, activating the integrated stress response (ISR) and subsequently sensitizing drug-resistant AML cells to venetoclax. Here we develop an integrative systems biology approach to acquire a deeper understanding of the molecular mechanisms behind this process, and in particular, of the specific role of the ISR in the commitment of cells to apoptosis. Our multi-scale mathematical model couples the ISR to the intrinsic apoptosis pathway in venetoclax-resistant AML cells, includes the metabolic effects of treatment, and integrates RNA, protein level, and cellular viability data. Using the mathematical model, we identify the dominant mechanisms by which ISR activation helps to overcome venetoclax resistance, and we study the temporal sequencing of combination treatment to determine the most efficient and robust combination treatment protocol.
Project description:Acute myeloid leukemia (AML) is a malignancy still associated with poor survival rates, among others, due to frequent occurrence of therapy-resistant relapse after standard-of-care treatment with cytarabine (AraC). AraC triggers apoptotic cell death, a type of cell death to which AML cells often become resistant. Therefore, therapeutic options that trigger an alternate type of cell death are of particular interest. We previously identified that the glycan-binding protein Galectin-9 (Gal-9) has tumor-selective and non-apoptotic cytotoxicity towards various types of cancer, which depended on autophagy inhibition. Thus, Gal-9 could be of therapeutic interest for (AraC-resistant) AML. In the current study, treatment with Gal-9 was cytotoxic for AML cells, including for CD34+ patient-derived AML stem cells, but not for healthy cord blood-derived CD34+ stem cells. This Gal-9-mediated cytotoxicity did not rely on apoptosis but was negatively associated with autophagic flux. Importantly, both AraC-sensitive and -resistant AML cell lines, as well as AML patient samples, were sensitive to single-agent treatment with Gal-9. Additionally, Gal-9 potentiated the cytotoxic effect of DNA demethylase inhibitor Azacytidine (Aza), a drug that is clinically used for patients that are not eligible for intensive AraC treatment. Thus, Gal-9 is a potential therapeutic agent for the treatment of AML, including AraC-resistant AML, by inducing caspase-independent cell death.
Project description:Reduced expression of the uptake transporter, OCTN1 (SLC22A4), has been reported as a strong predictor of poor event-free and overall survival in multiple cohorts of patients with acute myeloid leukemia (AML) receiving the cytidine nucleoside analog, cytarabine (Ara-C). To further understand the mechanistic basis of interindividual variability in the functional expression of OCTN1 in AML, we hypothesized a mechanistic connection to DNA methylation-based epigenetic repression of SLC22A4. We found increased basal SLC22A4 methylation was associated with decreased Ara-C uptake in AML cell lines. Pre-treatment with hypomethylating agents, 5-azacytidine, or decitabine, restored SLC22A4 mRNA expression, increased cellular uptake of Ara-C, and was associated with increased cellular sensitivity to Ara-C compared with vehicle-treated cells. Additionally, lower SLC22A4 methylation status was associated with distinct clinical advantages in both adult and pediatric patients with AML. These findings suggest a regulatory mechanism is involved in the interindividual variability in response to Ara-C, and provides a basis for the integration of hypomethylating agents into Ara-C-based treatment regimens.
Project description:The standard therapeutic approaches for acute myeloid leukemia (AML) continue to be based on anthracyclines and cytarabine. However, the prognosis for AML remains poor, especially for patients with high-risk disease. During the past decade, promising novel agents that target DNA replication and repair, as well as cell cycling and apoptosis, have been developed and are being actively investigated in AML. Among these agents is flavopiridol, which interferes with key steps of the cell cycle and effectively promotes cell death, and voreloxin, an intercalating agent that also targets topoisomerase II. Also under clinical study in AML are oligonucleotide antisense constructs, which suppress the translation of proteins essential for leukemic blast survival and proliferation, and agents that target antiapoptotic cascades. In summary, it is hoped that novel therapies such as these will augment and/or supplant our current cytarabine- and anthracycline-based approaches, overcome active drug-resistance pathways, and eventually improve outcomes for patients with AML.
Project description:BackgroundGilteritinib is the only drug approved as monotherapy for acute myeloid leukemia (AML) patients harboring FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) mutation throughout the world. However, drug resistance inevitably develops in clinical. Sitravatinib is a multi-kinase inhibitor under evaluation in clinical trials of various solid tumors. In this study, we explored the antitumor activity of sitravatinib against FLT3-ITD and clinically-relevant drug resistance in FLT3 mutant AML.MethodsGrowth inhibitory assays were performed in AML cell lines and BaF3 cells expressing various FLT3 mutants to evaluate the antitumor activity of sitravatinib in vitro. Immunoblotting was used to examine the activity of FLT3 and its downstream pathways. Molecular docking was performed to predict the binding sites of FLT3 to sitravatinib. The survival benefit of sitravatinib in vivo was assessed in MOLM13 xenograft mouse models and mouse models of transformed BaF3 cells harboring different FLT3 mutants. Primary patient samples and a patient-derived xenograft (PDX) model were also used to determine the efficacy of sitravatinib.ResultsSitravatinib inhibited cell proliferation, induced cell cycle arrest and apoptosis in FLT3-ITD AML cell lines. In vivo studies showed that sitravatinib exhibited a better therapeutic effect than gilteritinib in MOLM13 xenograft model and BaF3-FLT3-ITD model. Unlike gilteritinib, the predicted binding sites of sitravatinib to FLT3 did not include F691 residue. Sitravatinib displayed a potent inhibitory effect on FLT3-ITD-F691L mutation which conferred resistance to gilteritinib and all other FLT3 inhibitors available, both in vitro and in vivo. Compared with gilteritinib, sitravatinib retained effective activity against FLT3 mutation in the presence of cytokines through the more potent and steady inhibition of p-ERK and p-AKT. Furthermore, patient blasts harboring FLT3-ITD were more sensitive to sitravatinib than to gilteritinib in vitro and in the PDX model.ConclusionsOur study reveals the potential therapeutic role of sitravatinib in FLT3 mutant AML and provides an alternative inhibitor for the treatment of AML patients who are resistant to current FLT3 inhibitors.
Project description:Cytarabine (AraC) represents the most effective single agent treatment for AML. Nevertheless, overriding AraC resistance in AML remains an unmet medical need. Here we show that the CHK1 inhibitor (CHK1i) GDC-0575 enhances AraC-mediated killing of AML cells both in vitro and in vivo, thus abrogating any potential chemoresistance mechanisms involving DNA repair. Importantly, this combination of drugs does not affect normal long-term hematopoietic stem/progenitors. Moreover, the addition of CHK1i to AraC does not generate de novo mutations and in patients' samples where AraC is mutagenic, addition of CHK1i appears to eliminate the generation of mutant clones. Finally, we observe that persistent residual leukemic cells are quiescent and can become responsive to the treatment when forced into cycle via granulocyte colony-stimulating factor (G-CSF) administration. This drug combination (AraC+CHK1i+G-CSF) will open the doors for a more efficient treatment of AML in the clinic.