Project description:SARS-CoV-2 RNA in wastewater settled solids is associated with COVID-19 incidence in sewersheds and therefore, there is a strong interest in using these measurements to augment traditional disease surveillance methods. A wastewater surveillance program should provide rapid turn around for sample measurements (ideally within 24 hours), but storage of samples is necessary for a variety of reasons including biobanking. Here we investigate how storage of wastewater solids at 4 °C, -20 °C, and -80 °C affects measured concentrations of SARS-CoV-2 RNA. We find that short term (7 or 8 d) storage of raw solids at 4 °C has little effect on measured concentrations of SARS-CoV-2 RNA, whereas longer term storage at 4 °C (35-122 d) or freezing reduces measurements by 60%, on average. We show that normalizing SARS-CoV-2 RNA concentrations by concentrations of pepper mild mottle virus (PMMoV) RNA, an endogenous wastewater virus, can correct for changes during storage as storage can have a similar effect on PMMoV RNA as on SARS-CoV-2 RNA. The reductions in SARS-CoV-2 RNA in solids during freeze thaws is less than those reported for the same target in liquid influent by several authors.
Project description:We devised a model to interpret discordant SARS-CoV-2 test results. We estimate that, during March 2020-May 2022, a patient in the United States who received a positive rapid antigen test result followed by a negative nucleic acid test result had only a 15.4% (95% CI 0.6%-56.7%) chance of being infected.
Project description:To control the spread of the coronavirus disease 2019 (COVID-19) epidemics, it is necessary to have easy-to-use, reliable diagnostic tests available. The nasopharyngeal sampling method being often uncomfortable, nasal sampling could prove to be a viable alternative to the reference sampling method. We performed a multicentre, prospective validation study of the COVID-VIRO® test, using a nasal swab sampling method, in a point-of-care setting. In addition, we performed a multicentre, prospective, and usability study to validate the use of the rapid antigen nasal diagnostic test by laypersons. In March 2021, 239 asymptomatic and symptomatic patients were included in the validation study. Compared with reverse-transcription polymerase chain reaction on nasopharyngeal samples, the sensitivity and specificity of the COVID-VIRO® Antigen test combined with a nasal sampling method were evaluated as 96.88% and 100%, respectively. A total of 101 individuals were included in the usability study. Among these, 99% of the participants rated the instructions material as good, 98% of the subjects executed the test procedure well, and 98% of the participants were able to correctly interpret the test results. This study validates the relevance of COVID-VIRO® as a diagnostic tool from nasal specimens as well as its usability in the general population. COVID-VIRO® diagnostic performances and ease of use make it suitable for widespread utilization.
Project description:Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19 disease. RT-qPCR has been the primary method of diagnosis; however, the required infrastructure is lacking in many developing countries and the virus has remained a global challenge. More inexpensive and immediate test methods are required to facilitate local, regional, and national management strategies to re-open world economies. Here we have developed a SARS-CoV-2 antigen test in an inexpensive lateral flow format to generate a chromatographic result identifying the presence of the SARS-CoV-2 antigen, and thus an active infection, within a patient anterior nares swab sample. Our 15-min test requires no equipment or laboratory infrastructure to administer with a limit of detection of 2.0 × 102 TCID50/mL and 87.5% sensitivity, 100% specificity when tested against 40 known positive and 40 known negative patient samples established by a validated RT-qPCR test.
Project description:Polymerase chain reaction (PCR) and antigen tests have been used extensively for screening during the severe acute respiratory syndrome coronavirus 2 pandemics. However, the real-world sensitivity and specificity of the two testing procedures in the field have not yet been estimated without assuming that the PCR constitutes a gold standard test. We use latent class models to estimate the in situ performance of both tests using data from the Danish national registries. We find that the specificity of both tests is very high (>99.7%), while the sensitivities are 95.7% (95% confidence interval [CI]: 92.8%-98.4%) and 53.8% (95% CI: 49.8%-57.9%) for the PCR and antigen tests, respectively. These findings have implications for the use of confirmatory PCR tests following a positive antigen test result: we estimate that serial testing is counterproductive at higher prevalence levels.
Project description:The highly pathogenic MERS-CoV, SARS-CoV and SARS-CoV-2 cause acute respiratory syndrome and are often fatal. These new viruses pose major problems to global health in general and primarily to infection control and public health services. Accurate and selective assessment of MERS-CoV, SARS-CoV and SARS-CoV-2 would assist in the effective diagnosis of infected individual, offer clinical guidance and aid in assessing clinical outcomes. In this mini-review, we review the literature on various aspects, including the history and diversity of SARS-CoV-2, SARS-CoV and MERS-CoV, their detection methods in effective clinical diagnosis, clinical assessment of COVID-19, safety guidelines recommended by World Health Organization and legal regulations. This review article also deals with existing challenges and difficulties in the clinical diagnosis of SARS-CoV-2. Developing alternative diagnostic platforms by spotting the shortcomings of the existing point-of-care diagnostic devices would be useful in preventing future outbreaks.
Project description:Spike protein mutations E484K and N501Y carried by SARS-CoV-2 variants have been associated with concerning changes of the virus, including resistance to neutralizing antibodies and increased transmissibility. While the concerning variants are fast spreading in various geographical areas, identification and monitoring of these variants are lagging far behind, due in large part to the slow speed and insufficient capacity of viral sequencing. In response to the unmet need for a fast and efficient screening tool, we developed a single-tube duplex molecular assay for rapid and simultaneous identification of E484K and N501Y mutations from nasopharyngeal swab (NS) samples within 2.5 h from sample preparation to report. Using this tool, we screened a total of 1135 clinical NS samples collected from COVID patients at 8 hospitals within the Hackensack Meridian Health network in New Jersey between late December 2020 and March 2021. Our data revealed dramatic increases in the frequencies of both E484K and N501Y over time, underscoring the need for continuous epidemiological monitoring.
Project description:BackgroundAssigning meaningful probabilities of SARS-CoV-2 infection risk presents a diagnostic challenge across the continuum of care.ObjectiveThe aim of this study was to develop and clinically validate an adaptable, personalized diagnostic model to assist clinicians in ruling in and ruling out COVID-19 in potential patients. We compared the diagnostic performance of probabilistic, graphical, and machine learning models against a previously published benchmark model.MethodsWe integrated patient symptoms and test data using machine learning and Bayesian inference to quantify individual patient risk of SARS-CoV-2 infection. We trained models with 100,000 simulated patient profiles based on 13 symptoms and estimated local prevalence, imaging, and molecular diagnostic performance from published reports. We tested these models with consecutive patients who presented with a COVID-19-compatible illness at the University of California San Diego Medical Center over the course of 14 days starting in March 2020.ResultsWe included 55 consecutive patients with fever (n=43, 78%) or cough (n=42, 77%) presenting for ambulatory (n=11, 20%) or hospital care (n=44, 80%). In total, 51% (n=28) were female and 49% (n=27) were aged <60 years. Common comorbidities included diabetes (n=12, 22%), hypertension (n=15, 27%), cancer (n=9, 16%), and cardiovascular disease (n=7, 13%). Of these, 69% (n=38) were confirmed via reverse transcription-polymerase chain reaction (RT-PCR) to be positive for SARS-CoV-2 infection, and 20% (n=11) had repeated negative nucleic acid testing and an alternate diagnosis. Bayesian inference network, distance metric learning, and ensemble models discriminated between patients with SARS-CoV-2 infection and alternate diagnoses with sensitivities of 81.6%-84.2%, specificities of 58.8%-70.6%, and accuracies of 61.4%-71.8%. After integrating imaging and laboratory test statistics with the predictions of the Bayesian inference network, changes in diagnostic uncertainty at each step in the simulated clinical evaluation process were highly sensitive to location, symptom, and diagnostic test choices.ConclusionsDecision support models that incorporate symptoms and available test results can help providers diagnose SARS-CoV-2 infection in real-world settings.
Project description:BackgroundSerial screening is critical for restricting spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by facilitating timely identification of infected individuals to interrupt transmission. Variation in sensitivity of different diagnostic tests at different stages of infection has not been well documented.MethodsIn a longitudinal study of 43 adults newly infected with SARS-CoV-2, all provided daily saliva and nasal swabs for quantitative reverse transcription polymerase chain reaction (RT-qPCR), Quidel SARS Sofia antigen fluorescent immunoassay (FIA), and live virus culture.ResultsBoth RT-qPCR and Quidel SARS Sofia antigen FIA peaked in sensitivity during the period in which live virus was detected in nasal swabs, but sensitivity of RT-qPCR tests rose more rapidly prior to this period. We also found that serial testing multiple times per week increases the sensitivity of antigen tests.ConclusionsRT-qPCR tests are more effective than antigen tests at identifying infected individuals prior to or early during the infectious period and thus for minimizing forward transmission (given timely results reporting). All tests showed >98% sensitivity for identifying infected individuals if used at least every 3 days. Daily screening using antigen tests can achieve approximately 90% sensitivity for identifying infected individuals while they are viral culture positive.