Unknown

Dataset Information

0

Experimental and Theoretical Study of the OH-Initiated Degradation of Piperazine under Simulated Atmospheric Conditions.


ABSTRACT: The OH-initiated photo-oxidation of piperazine and 1-nitropiperazine as well as the photolysis of 1-nitrosopiperazine were investigated in a large atmospheric simulation chamber. The rate coefficient for the reaction of piperazine with OH radicals was determined by the relative rate method to be kOH-piperazine = (2.8 ± 0.6) × 10-10 cm3 molecule-1 s-1 at 307 ± 2 K and 1014 ± 2 hPa. Product studies showed the piperazine + OH reaction to proceed both via C-H and N-H abstraction, resulting in the formation of 1,2,3,6-tetrahydropyrazine as the major product and in 1-nitropiperazine and 1-nitrosopiperazine as minor products. The branching in the piperazinyl radical reactions with NO, NO2, and O2 was obtained from 1-nitrosopiperazine photolysis experiments and employed analyses of the 1-nitropiperazine and 1-nitrosopiperazine temporal profiles observed during piperazine photo-oxidation. The derived initial branching between N-H and C-H abstraction by OH radicals, kN-H/(kN-H + kC-H), was 0.18 ± 0.04. All experiments were accompanied by substantial aerosol formation that was initiated by the reaction of piperazine with nitric acid. Both primary and secondary photo-oxidation products including 1-nitropiperazine and 1,4-dinitropiperazine were detected in the aerosol particles formed. Corroborating atmospheric photo-oxidation schemes for piperazine and 1-nitropiperazine were derived from M06-2X/aug-cc-pVTZ quantum chemistry calculations and master equation modeling of the pivotal reaction steps. The atmospheric chemistry of piperazine is evaluated, and a validated chemical mechanism for implementation in dispersion models is presented.

SUBMITTER: Tan W 

PROVIDER: S-EPMC8021224 | biostudies-literature | 2021 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Experimental and Theoretical Study of the OH-Initiated Degradation of Piperazine under Simulated Atmospheric Conditions.

Tan Wen W   Zhu Liang L   Mikoviny Tomas T   Nielsen Claus J CJ   Wisthaler Armin A   D'Anna Barbara B   Antonsen Simen S   Stenstrøm Yngve Y   Farren Naomi J NJ   Hamilton Jacqueline F JF   Boustead Graham A GA   Brennan Alexander D AD   Ingham Trevor T   Heard Dwayne E DE  

The journal of physical chemistry. A 20201230 1


The OH-initiated photo-oxidation of piperazine and 1-nitropiperazine as well as the photolysis of 1-nitrosopiperazine were investigated in a large atmospheric simulation chamber. The rate coefficient for the reaction of piperazine with OH radicals was determined by the relative rate method to be <i>k</i><sub>OH-piperazine</sub> = (2.8 ± 0.6) × 10<sup>-10</sup> cm<sup>3</sup> molecule<sup>-1</sup> s<sup>-1</sup> at 307 ± 2 K and 1014 ± 2 hPa. Product studies showed the piperazine + OH reaction to  ...[more]

Similar Datasets

| S-EPMC11017256 | biostudies-literature
| S-EPMC8419843 | biostudies-literature
| S-EPMC11194805 | biostudies-literature
| S-EPMC4601031 | biostudies-literature
| S-EPMC11299184 | biostudies-literature
| S-EPMC11754898 | biostudies-literature
| S-EPMC4152393 | biostudies-literature
| S-EPMC10720005 | biostudies-literature
| S-EPMC9057479 | biostudies-literature
| S-EPMC10336969 | biostudies-literature