Unknown

Dataset Information

0

Super-Resolution Mapping of a Chemical Reaction Driven by Plasmonic Near-Fields.


ABSTRACT: Plasmonic nanoparticles have recently emerged as promising photocatalysts for light-driven chemical conversions. Their illumination results in the generation of highly energetic charge carriers, elevated surface temperatures, and enhanced electromagnetic fields. Distinguishing between these often-overlapping processes is of paramount importance for the rational design of future plasmonic photocatalysts. However, the study of plasmon-driven chemical reactions is typically performed at the ensemble level and, therefore, is limited by the intrinsic heterogeneity of the catalysts. Here, we report an in situ single-particle study of a fluorogenic chemical reaction driven solely by plasmonic near-fields. Using super-resolution fluorescence microscopy, we map the position of individual product molecules with an ∼30 nm spatial resolution and demonstrate a clear correlation between the electric field distribution around individual nanoparticles and their super-resolved catalytic activity maps. Our results can be extended to systems with more complex electric field distributions, thereby guiding the design of future advanced photocatalysts.

SUBMITTER: Hamans RF 

PROVIDER: S-EPMC8023696 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4733473 | biostudies-other
| S-EPMC9475023 | biostudies-literature
| S-EPMC3915561 | biostudies-literature
| S-EPMC8949759 | biostudies-literature
| S-EPMC4780081 | biostudies-other
| S-EPMC9419299 | biostudies-literature
| S-EPMC6059828 | biostudies-literature
| S-EPMC5653755 | biostudies-literature
| S-EPMC6181996 | biostudies-literature
| S-EPMC3799687 | biostudies-other