Project description:A negative correlation exists between the severity of osteoporosis and citrate levels in bone. Our previous research found that melatonin can significantly improve bone mass in mice with osteoporosis, but the underlying mechanism involving citrate remains unknown. Herein, we demonstrated that melatonin increased bone volume and citrate levels in ovariectomized osteoporosis mice. Melatonin increased citrate and mineralized nodules in osteoblasts induced from primary mouse bone marrow mesenchymal stem cells in vitro. ZIP-1 knockdown and overexpression confirmed that melatonin specifically upregulated ZIP-1 to rescue citrate levels and bone mass. In general, we verified that melatonin can improve bone mass by enhancing matrix mineralization, which is highly related to increased citrate secretion from osteoblasts, and that ZIP-1 is the target of melatonin. These findings reveal another role of melatonin in regulating bone remodeling and provide a research base for its possible application in the treatment of clinical osteoporosis in the future.
Project description:The extracellular acidic milieu in bones results in activation of osteoclasts (OC) and inhibition of osteoblasts (OB) causing a net loss of calcium from the skeleton and the deterioration of bone microarchitecture. Alkalinization through supplementation with potassium citrate (K citrate) has been proposed to limit the osteopenia progression, even though its pharmacological activity in bone microenvironment is not well defined. We evaluated if K citrate was able to prevent the adverse effects that acidic milieu induces on bone cells. OC and OB were maintained in neutral (pH 7.4) versus acidic (pH 6.9) culture medium, and treated with different K citrate concentrations. We evaluated the OC differentiation at seven days, by counting of multinucleated cells expressing tartrate-resistant acid phosphatase, and the activity of mature OC at 14 days, by quantifying of collagen degradation. To evaluate the effects on OB, we analyzed proliferation, mineralization, and expression of bone-related genes. We found that the low pH increased OC differentiation and activity and decreased OB function. The osteoclastogenesis was also promoted by RANKL concentrations ineffective at pH 7.4. Non-cytotoxic K citrate concentrations were not sufficient to steadily neutralize the acidic medium, but a) inhibited the osteoclastogenesis, the collagen degradation, and the expression of genes involved in RANKL-mediated OC differentiation, b) enhanced OB proliferation and alkaline phosphatase expression, whereas it did not affect the in vitro mineralization, and c) were effective also in OC cultures resistant to alendronate, i.e. the positive control of osteoclastogenesis inhibition. In conclusion, K citrate prevents the increase in OC activity induced by the acidic microenvironment, and the effect does not depend exclusively on its alkalizing capacity. These data provide the biological basis for the use of K citrate in preventing the osteopenia progression resulting from low-grade acidosis.
Project description:Osteoblast dysfunction is a major cause of age-related bone loss, but the mechanisms underlying changes in osteoblast function with aging are poorly understood. This study demonstrates that osteoblasts in aged mice exhibit markedly impaired adhesion to the bone formation surface and reduced mineralization in vivo and in vitro. Rictor, a specific component of the mechanistic target of rapamycin complex 2 (mTORC2) that controls cytoskeletal organization and cell survival, is downregulated with aging in osteoblasts. Mechanistically, we found that an increased level of reactive oxygen species with aging stimulates the expression of miR-218, which directly targets Rictor and reduces osteoblast bone surface adhesion and survival, resulting in a decreased number of functional osteoblasts and accelerated bone loss in aged mice. Our findings reveal a novel functional pathway important for age-related bone loss and support for miR-218 and Rictor as potential targets for therapeutic intervention for age-related osteoporosis treatment.
Project description:Adenosine and its receptors play a key role in bone homeostasis and regeneration. Extracellular adenosine is generated from CD39 and CD73 activity in the cell membrane, through conversion of adenosine triphosphate to adenosine monophosphate (AMP) and AMP to adenosine, respectively. Despite the relevance of CD39/CD73 to bone health, the roles of these enzymes in bona fide skeletal disorders remain unknown. We demonstrate that CD39/CD73 expression and extracellular adenosine levels in the bone marrow are substantially decreased in animals with osteoporotic bone loss. Knockdown of estrogen receptors ESR1 and ESR2 in primary osteoprogenitors and osteoclasts undergoing differentiation showed decreased coexpression of membrane-bound CD39 and CD73 and lower extracellular adenosine. Targeting the adenosine A2B receptor using an agonist attenuated bone loss in ovariectomized mice. Together, these findings suggest a pathological association of purine metabolism with estrogen deficiency and highlight the potential of A2B receptor as a target to treat osteoporosis.
Project description:Histone deacetylase (Hdac) inhibitors are used clinically to treat cancer and epilepsy. Although Hdac inhibition accelerates osteoblast maturation and suppresses osteoclast maturation in vitro, the effects of Hdac inhibitors on the skeleton are not understood. The purpose of this study was to determine how the pan-Hdac inhibitor, suberoylanilide hydroxamic acid (SAHA; a.k.a. vorinostat or Zolinza(TM)) affects bone mass and remodeling in vivo. Male C57BL/6J mice received daily SAHA (100mg/kg) or vehicle injections for 3 to 4weeks. SAHA decreased trabecular bone volume fraction and trabecular number in the distal femur. Cortical bone at the femoral midshaft was not affected. SAHA reduced serum levels of P1NP, a bone formation marker, and also suppressed tibial mRNA levels of type I collagen, osteocalcin and osteopontin, but did not alter Runx2 or osterix transcripts. SAHA decreased histological measures of osteoblast number but interestingly increased indices of osteoblast activity including mineral apposition rate and bone formation rate. Neither serum (TRAcP 5b) nor histological markers of bone resorption were affected by SAHA. P1NP levels returned to baseline in animals which were allowed to recover for 4weeks after 4weeks of daily SAHA injections, but bone density remained low. In vitro, SAHA suppressed osteogenic colony formation, decreased osteoblastic gene expression, induced cell cycle arrest, and caused DNA damage in bone marrow-derived adherent cells. Collectively, these data demonstrate that bone loss following treatment with SAHA is primarily due to a reduction in osteoblast number. Moreover, these decreases in osteoblast number can be attributed to the deleterious effects of SAHA on immature osteoblasts, even while mature osteoblasts are resistant to the harmful effects and demonstrate increased activity in vivo, indicating that the response of osteoblasts to SAHA is dependent upon their differentiation state. These studies suggest that clinical use of SAHA and other Hdac inhibitors to treat cancer, epilepsy or other conditions may potentially compromise skeletal structure and function.
Project description:BackgroundHigher protein diets are promoted for effective weight loss. Striated tissues in omnivorous diets contain high-quality protein, but limited data exist regarding their effects on bone.MethodsTo examine the effects of energy restriction-induced weight loss with higher protein omnivorous diets versus lower protein vegetarian diets on bone mineral density in overweight postmenopausal women, two randomized controlled feeding studies were conducted. In Study 1, 28 women consumed 750 kcal/day energy deficit diets with 18% energy from protein via lacto-ovo vegetarian sources (normal protein, n = 15) or 30% energy from protein with 40% of protein from lean pork (higher protein, n = 13, omnivorous) for 12 weeks. In Study 2, 54 women consumed their habitual diet (control, n = 11) or 1,250 kcal/day diets with 16% energy from nonmeat protein sources (n = 14) or 26% energy from protein, including chicken (n = 15) or beef (n = 14) for 9 weeks.ResultsStudy 1: With weight loss (normal protein -11.2%, higher protein -10.1%), bone mineral density was not significantly changed in normal protein (-0.003 ± 0.003 g/cm(2), -0.3%) but decreased in higher protein (-0.0167 ± 0.004 g/cm(2), -1. 4%, group-by-time p < .05). Study 2: The control, nonmeat, chicken, and beef groups lost 1.5%, 7.7%, 10.4%, and 8.1% weight and 0.0%, 0.4%, 1.1%, and 1.4% bone mineral density, respectively. The change of bone mineral density was significant for chicken and beef compared with the control (group-by-time, p < .05). Markers of calcium metabolism and bone homeostasis in blood and urine were not changed over time or differentially affected by diet.ConclusionConsumption of higher protein omnivorous diets promoted decreased bone mineral density after weight loss in overweight postmenopausal women.
Project description:Macroautophagy/autophagy is a highly regulated process involved in the turnover of cytosolic components, however its pivotal role in maintenance of bone homeostasis remains elusive. In the present study, we investigated the direct role of ATG7 (autophagy related 7) during developmental and remodeling stages in vivo using osteoblast-specific Atg7 conditional knockout (cKO) mice. Atg7 cKO mice exhibited a reduced bone mass at both developmental and adult age. The trabecular bone volume of Atg7 cKO mice was significantly lower than that of controls at 5 months of age. This phenotype was attributed to decreased osteoblast formation and matrix mineralization, accompanied with an increased osteoclast number and the extent of the bone surface covered by osteoclasts as well as an elevated secretion of TNFSF11/RANKL (tumor necrosis factor [ligand] superfamily, member 11), and a decrease in TNFRSF11B/OPG (tumor necrosis factor receptor superfamily, member 11b [osteoprotegerin]). Remarkably, Atg7 deficiency in osteoblasts triggered endoplasmic reticulum (ER) stress, whereas attenuation of ER stress by administration of phenylbutyric acid in vivo abrogated Atg7 ablation-mediated effects on osteoblast differentiation, mineralization capacity and bone formation. Consistently, Atg7 deficiency impeded osteoblast mineralization and promoted apoptosis partially in DDIT3/CHOP (DNA-damage-inducible transcript 3)- and MAPK8/JNK1 (mitogen-activated protein kinase 8)-SMAD1/5/8-dependent manner in vitro, while reconstitution of Atg7 could improve ER stress and restore skeletal balance. In conclusion, our findings provide direct evidences that autophagy plays crucial roles in regulation of bone homeostasis and suggest an innovative therapeutic strategy against skeletal diseases.
Project description:Diets rich in animal protein, such as the typical American diet, are thought to create a high acid load. An association between acid load and bone loss has led to the idea that providing positive alkaline salt therapy could have beneficial effects on bone metabolism. The objective of this study was to investigate the effects of potassium citrate (K-citrate), 40 mEq daily, over 1 year on bone resorption and formation.A randomized, double-blind, placebo-controlled trial of 83 women with postmenopausal osteopenia. Levels of bone turnover markers, specifically urinary N-telopeptide of collagen type 1 (u-NTX), amino-terminal propeptide of type 1 procollagen (P1NP), bone-specific alkaline phosphatase (BSAP), and osteocalcin (OC) were compared. Changes in bone mineral density (BMD) were also examined.K-citrate decreased both u-NTX (P = .005) and serum P1NP (P<.001) starting at month 1 and continuing through month 12. No significant change was seen in BSAP or OC. No significant change was seen in lumbar or hip BMD between the 2 groups.In women with postmenopausal osteopenia, treatment with K-citrate for 1 year resulted in a significant decrease in markers of turnover. The effect on markers of bone formation was not consistent. K-citrate may serve as a potential treatment for bone loss that is well tolerated and without any significant known long-term consequences.
Project description:This one-year double blind randomized control trial assessed the effects of nightly melatonin, strontium (citrate), vitamin D3 and vitamin K2 (MK7; MSDK) on bone mineral density (BMD) and quality of life (QOL) in postmenopausal osteopenic women (ages 49-75). Compared to placebo, MSDK treatment increased BMD in lumbar spine (4.3%) and left femoral neck (2.2%), with an upward trend for total left hip (p=0.069). MSDK increased serum P1NP levels and reduced bone turnover (CTx:P1NP). Psychometric analyses indicated that mood and sleep quality improved for the MSDK group. MSDK-exposed human mesenchymal stem cells (hMSCs) and human peripheral blood monocytes (hPBMCs) plated in transwells or layered demonstrated increases in osteoblastogenesis, decreases in osteoclastogenesis, increases in OPG (TNFRSF11B) and decreases in RANKL (TNFSF11) levels. In transwell osteoblasts, MSDK increased pERK1/2 (MAPK1/MAPK3) and RUNX2 levels; decreased ERK5 (MAPK7); and did not affect the expression of NF?B (NFKB1) and ?1integrin (ITGB1). In layered osteoblasts, MSDK also decreased expression of the metabolic proteins PPAR? (PPARG) and GLUT4 (SLC2A4). In adipose-derived human MSCs, MSDK induced osteoblastogenesis. These findings provide both clinical and mechanistic support for the use of MSDK for the prevention or treatment of osteopenia, osteoporosis or other bone-related diseases.
Project description:Our preliminary findings have lead us to propose bone marrow adipocyte secretions as new contributors to bone loss. Indeed, using a coculture model based on human bone marrow stromal cells, we previously showed that soluble factors secreted by adipocytes induced the conversion of osteoblasts towards an adipocyte-like phenotype. In this study, microarray gene expression profiling showed profound transcriptomic changes in osteoblasts following coculture and confirmed the enrichment of the adipocyte gene signature. Double immunofluorescence microscopic analyses demonstrated the coexpression of adipogenic and osteoblastic specific markers in individual cells, providing evidence for a transdifferentiation event. At the molecular level, this conversion was associated with upregulated expression levels of reprogramming genes and a decrease in the DNA methylation level. In line with these in vitro results, preliminary immunohistochemical analysis of bone sections revealed adipogenic marker expression in osteoblasts from elderly subjects. Altogether, these data suggest that osteoblast transdifferentiation could contribute to decreased bone mass upon ageing.