Project description:The oxygen reduction reaction (ORR) at neutral pH in various aqueous chloride-containing solutions was investigated voltammetrically. In particular, the ORR was performed in high chloride containing aqueous media including authentic and synthetic seawater under oxygen saturated conditions and compared with that in aqueous nitrate and perchlorate media. The experimental voltammograms revealed a two-electron process forming hydrogen peroxide in low chloride media. In contrast, high concentration chloride solutions, including both synthetic and authentic seawater showed an increase of overpotential, accompanied by a splitting of the voltammetric peak into two one-electron features indicating the formation of superoxide in the first step and its release from the silver-solution interface. The implications for silver nanoparticle toxicology are discussed given the markedly greater toxicity of superoxide over peroxide and the high levels of chloride in biological media as well as in seawater.
Project description:Transcranial direct-current stimulation (tDCS) enhances motor learning in adults. We have demonstrated that anodal tDCS and high-definition (HD) tDCS of the motor cortex can enhance motor skill acquisition in children, but behavioral mechanisms remain unknown. Robotics can objectively quantify complex sensorimotor functions to better understand mechanisms of motor learning. We aimed to characterize changes in sensorimotor function induced by tDCS and HD-tDCS paired motor learning in children within an interventional trial. Healthy, right-handed children (12-18?y) were randomized to anodal tDCS, HD-tDCS, or sham targeting the right primary motor cortex during left-hand Purdue pegboard test (PPT) training over five consecutive days. A KINARM robotic protocol quantifying proprioception, kinesthesia, visually guided reaching, and an object hit task was completed at baseline, posttraining, and six weeks later. Effects of the treatment group and training on changes in sensorimotor parameters were explored. Twenty-four children (median 15.5 years, 52% female) completed all measures. Compared to sham, both tDCS and HD-tDCS demonstrated enhanced motor learning with medium effect sizes. At baseline, multiple KINARM measures correlated with PPT performance. Following training, visually guided reaching in all groups was faster and required less corrective movements in the trained arm (H(2)?=?9.250, p = 0.010). Aspects of kinesthesia including initial direction error improved across groups with sustained effects at follow-up (H(2)?=?9.000, p = 0.011). No changes with training or stimulation were observed for position sense. For the object hit task, the HD-tDCS group moved more quickly with the right hand compared to sham at posttraining (? 2(2)?=?6.255, p = 0.044). Robotics can quantify complex sensorimotor function within neuromodulator motor learning trials in children. Correlations with PPT performance suggest that KINARM metrics can assess motor learning effects. Understanding how tDCS and HD-tDCS enhance motor learning may be improved with robotic outcomes though specific mechanisms remain to be defined. Exploring mechanisms of neuromodulation may advance therapeutic approaches in children with cerebral palsy and other disabilities.
Project description:There is growing interest in non-invasive brain stimulation techniques. A drawback is that the relationship between stimulation and cognitive outcomes for various tasks are unknown. Transcranial direct current stimulation (tDCS) provides diffuse current spread, whereas high-definition tDCS (HD-tDCS) provides more targeted current. The direction of behavioral effects after tDCS can be difficult to predict in cognitive realms such as attention and working memory (WM). Previously, we showed that in low and high WM capacity groups tDCS modulates performance in nearly equal and opposite directions on a change detection task, with improvement for the high capacity participants alone. Here, we used the retro-cue paradigm to test attentional shifting among items in WM to investigate whether WM capacity (WMC) predicted different behavioral consequences during anodal tDCS or HD-tDCS to posterior parietal cortex (PPC). In two experiments, with 24 participants each, we used different stimulus categories (colored circles, letters) and stimulation sites (right, left PPC). The results showed a significant (Experiment 1) or trending (Experiment 2) WMC x stimulation interaction. Compared to tDCS, after HD-tDCS the retro-cueing benefit was significantly greater for the low WMC group but numerically worse for the high WMC group. These data highlight the importance of considering group differences when using non-invasive neurostimulation techniques.
Project description:High-definition transcranial direct current stimulation (HD-tDCS) is a valid brain stimulation technology to optimize cognitive function. Recent evidence indicates that single anodal tDCS session enhances attention; however, the variation in attention produced by repeated anodal HD-tDCS over a longer period of time has not been explored. We examined the modulation of attention function in healthy young participants (39 young adults) who received repeated HD-tDCS sustained for 4 weeks. The results showed a robust benefit of anodal HD-tDCS on executive control and psychomotor efficiency, but not on orienting, alerting, or selective attention (inhibition); the benefit increased successively over 4 weeks; and the enhancement on executive control of each week was significant compared to baseline in the anodal group. In addition, the subjects' performances on the test of executive control and psychomotor efficiency gradually restored to the initial level in the sham group, which appeared obviously from week 3 (after 9 interventions), but the improvement of attention in the anodal group was persistent. We conclude that repeated anodal HD-tDCS provides a positive benefit on executive control and psychomotor efficiency and has obvious accumulative effect after 9 or more times intervention compared to sham HD-tDCS. Additionally, our findings might provide pivotal guidance for the formulation of a strategy for the use of repeated anodal HD-tDCS to modulate on attention function.
Project description:Background and purposeAcute Respiratory Distress Syndrome (ADRS) due to coronavirus disease 2019 (COVID-19) has been associated with muscle fatigue, corticospinal pathways dysfunction, and mortality. High-Definition transcranial Direct Current Stimulation (HD-tDCS) may be used to attenuate clinical impairment in these patients. The HD-RECOVERY randomized clinical trial was conducted to evaluate the efficacy and safety of HD-tDCS with respiratory rehabilitation in patients with moderate to severe ARDS due to COVID-19.MethodsFifty-six critically ill patients were randomized 1:1 to active (n = 28) or sham (n = 28) HD-tDCS (twice a day, 30-min, 3-mA) plus respiratory rehabilitation for up to 10 days or until intensive care unit discharge. The primary outcome was ventilator-free days during the first 28 days, defined as the number of days free from mechanical ventilation. Furthermore, secondary outcomes such as delirium, organ failure, hospital length of stay and adverse effects were investigated.ResultsActive HD-tDCS induced more ventilator-free days compared to sham HD-tDCS. Patients in the active group vs in the sham group experienced lower organ dysfunction, delirium, and length of stay rates over time. In addition, positive clinical response was higher in the active vs sham group. There was no significant difference in the prespecified secondary outcomes at 5 days. Adverse events were similar between groups.ConclusionsAmong patients with COVID-19 and moderate to severe ARDS, use of active HD-tDCS compared with sham HD-tDCS plus respiratory rehabilitation resulted in a statistically significant increase in the number of ventilator-free days over 28 days. HD-tDCS combined with concurrent rehabilitation therapy is a safe, feasible, potentially add-on intervention, and further trials should examine HD-tDCS efficacy in a larger sample of patients with COVID-19 and severe hypoxemia.
Project description:There is evidence for dissociable, causal roles for two key social brain regions in young adults. Specifically, the right temporoparietal junction (rTPJ) is associated with embodied perspective taking, whereas the dorsomedial prefrontal cortex (dmPFC) is associated with the integration of social information. However, it is unknown whether these causal brain-behaviour associations are evident in older adults. Fifty-two healthy older adults were stratified to receive either rTPJ or dmPFC anodal high-definition transcranial direct current stimulation in a sham-controlled, double-blinded, repeated-measures design. Self-other processing was assessed across implicit and explicit level one (line-of-sight) and level two (embodied rotation) visual perspective taking (VPT) tasks, and self-other encoding effects on episodic memory. Both rTPJ and dmPFC stimulation reduced the influence of the alternate perspective during level one VPT, indexed by a reduced congruency effect (difference between congruent and incongruent perspectives). There were no stimulation effects on level two perspective taking nor self-other encoding effects on episodic memory. Stimulation to the rTPJ and dmPFC improved perspective selection during level one perspective taking. However, dissociable effects on self-other processing, previously observed in young adults, were not identified in older adults. The results provide causal evidence for age-related changes in social brain function that requires further scrutinization.
Project description:Glioblastomas (GBM) are aggressive brain tumors with very poor prognosis. While silver nanoparticles represent a potential new strategy for anticancer therapy, the silver/silver chloride nanoparticles (Ag/AgCl-NPs) have microbicidal activity, but had not been tested against tumor cells. Here, we analyzed the effect of biogenically produced Ag/AgCl-NPs (from yeast cultures) on the proliferation of GBM02 glioblastoma cells (and of human astrocytes) by automated, image-based high-content analysis (HCA). We compared the effect of 0.1-5.0 µg mL-1 Ag/AgCl-NPs with that of 9.7-48.5 µg mL-1 temozolomide (TMZ, chemotherapy drug currently used to treat glioblastomas), alone or in combination. At higher concentrations, Ag/AgCl-NPs inhibited GBM02 proliferation more effectively than TMZ (up to 82 and 62% inhibition, respectively), while the opposite occurred at lower concentrations (up to 23 and 53% inhibition, for Ag/AgCl-NPs and TMZ, respectively). The combined treatment (Ag/AgCl-NPs?+?TMZ) inhibited GBM02 proliferation by 54-83%. Ag/AgCl-NPs had a reduced effect on astrocyte proliferation compared with TMZ, and Ag/AgCl-NPs?+?TMZ inhibited astrocyte proliferation by 5-42%. The growth rate and population doubling time analyses confirmed that treatment with Ag/AgCl-NPs was more effective against GBM02 cells than TMZ (~?67-fold), and less aggressive to astrocytes, while Ag/AgCl-NP?+?TMZ treatment was no more effective against GBM02 cells than Ag/AgCl-NPs monotherapy. Taken together, our data indicate that 2.5 µg mL-1 Ag/AgCl-NPs represents the safest dose tested here, which affects GBM02 proliferation, with limited effect on astrocytes. Our findings show that HCA is a useful approach to evaluate the antiproliferative effect of nanoparticles against tumor cells.
Project description:DNA-stabilized silver nanoclusters (AgN-DNAs) are known to have one or two DNA oligomer ligands per nanocluster. Here, we present the first evidence that AgN-DNA species can possess additional chloride ligands that lead to increased stability in biologically relevant concentrations of chloride. Mass spectrometry of five chromatographically isolated near-infrared (NIR)-emissive AgN-DNA species with previously reported X-ray crystal structures determines their molecular formulas to be (DNA)2[Ag16Cl2]8+. Chloride ligands can be exchanged for bromides, which red-shift the optical spectra of these emitters. Density functional theory (DFT) calculations of the 6-electron nanocluster show that the two newly identified chloride ligands were previously assigned as low-occupancy silvers by X-ray crystallography. DFT also confirms the stability of chloride in the crystallographic structure, yields qualitative agreement between computed and measured UV-vis absorption spectra, and provides interpretation of the 35Cl-nuclear magnetic resonance spectrum of (DNA)2[Ag16Cl2]8+. A reanalysis of the X-ray crystal structure confirms that the two previously assigned low-occupancy silvers are, in fact, chlorides, yielding (DNA)2[Ag16Cl2]8+. Using the unusual stability of (DNA)2[Ag16Cl2]8+ in biologically relevant saline solutions as a possible indicator of other chloride-containing AgN-DNAs, we identified an additional AgN-DNA with a chloride ligand by high-throughput screening. Inclusion of chlorides on AgN-DNAs presents a promising new route to expand the diversity of AgN-DNA structure-property relationships and to imbue these emitters with favorable stability for biophotonics applications.
Project description:Chronic Posttraumatic stress disorder (PTSD), characterized by symptoms of re-experiencing, hyperarousal, and avoidance, is challenging to treat as a significant proportion of patients remain symptomatic following even empirically supported interventions. The current case series investigated the effects of up to 10 sessions of high definition transcranial direct current stimulation (HD-tDCS) on symptoms of PTSD. Participants received HD-tDCS that targeted the right lateral temporal cortex (LTC; center cathode placed over T8), given this region's potential involvement in symptoms of re-experiencing and, possibly, hyperarousal. Five of the six enrolled patients completed at least 8 sessions. Of these five, four showed improvement in symptoms of re-experiencing after HD-tDCS. This improvement was accompanied by connectivity change in the right LTC as well as a larger extended fear network but not a control network that consisted of visual cortex regions; however, the nature of the change varied across participants as some showed increased connectivity whereas others showed decreased connectivity. These preliminary data suggest that HD-tDCS may be beneficial for treatment of specific PTSD symptoms, in at least some individuals, and warrants further investigation.
Project description:In aerobic natural surface water, a silver ion (Ag+) exists in various Ag+-Cl- complexes because of a strong affinity for a chloride ion (Cl-); however, little information is available about the role of the Ag+-Cl- complex in the formation of silver nanoparticles (AgNPs). This study demonstrates that soluble AgClx(x-1)- species act as a precursor of AgNPs under simulated sunlight irradiation. The AgNP photoproduction increases with Cl- levels up to 0.0025 M ([Ag+] = 5 × 10-7 M) and decreases with continued Cl- level increase (0.09 to 0.5 M). At [Cl-] ≤ 0.0025 M (freshwater systems), photoproduction of AgNP correlates with the formation of AgCl(aq), suggesting that it is the most photoactive species in those systems. Matching the ionic strength of experiments containing various Cl- levels indicates that the trend in AgNP photoproduction correlates with Cl- concentrations rather than ionic strength-induced effects. The photoproduction of AgNPs is highly pH-dependent, especially at pH > 8.3. The UV and visible light portions of the solar light spectrum are equally important in photoreduction of Ag+. Overall, we show evidence that AgClx(x-1)- species irradiated under sunlight conditions contributes to the formation of nanosized silver (Ag) in the environment.