Project description:Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a key regulator of energy homeostasis in several cell types. Expression of this enzyme in tumor cells promotes proliferation and migration, and expression in tumor-associated immune cells facilitates M2 macrophage polarization and the development of myeloid-derived suppressor cells. Thus, there has been interest in developing CaMKK2 inhibitors as potential anticancer therapeutics. One impediment to clinical development of these agents is that the roles of CaMKK2 in other cellular compartments within the tumor immune microenvironment remain to be established. We report herein that CaMKK2 is expressed at low basal levels in natural killer (NK) cells but is upregulated in tumor-infiltrating NK cells where it suppresses apoptosis and promotes proliferation. NK cell-intrinsic deletion of CaMKK2 increased metastatic progression in several murine models, establishing a critical role for this enzyme in NK cell-mediated antitumor immunity. Ablation of the CaMKK2 protein, but not inhibition of its kinase activity, resulted in decreased NK-cell survival. These results indicate an important scaffolding function for CaMKK2 in NK cells and suggest that competitive CaMKK2 inhibitors and ligand-directed degraders (LDD) are likely to have distinct therapeutic utilities. Finally, we determined that intracellular lactic acid is a key driver of CaMKK2 expression, suggesting that upregulated expression of this enzyme is an adaptive mechanism by which tumor-infiltrating NK cells mitigate the deleterious effects of a lactic acid-rich tumor microenvironment. The findings of this study should inform strategies to manipulate the CaMKK2-signaling axis as a therapeutic approach in cancer.
Project description:The functional diversity of natural killer (NK) cell repertoires stems from differentiation, homeostatic, receptor-ligand interactions and adaptive-like responses to viral infections. In the present study, we generated a single-cell transcriptional reference map of healthy human blood- and tissue-derived NK cells, with temporal resolution and fate-specific expression of gene-regulatory networks defining NK cell differentiation. Transfer learning facilitated incorporation of tumor-infiltrating NK cell transcriptomes (39 datasets, 7 solid tumors, 427 patients) into the reference map to analyze tumor microenvironment (TME)-induced perturbations. Of the six functionally distinct NK cell states identified, a dysfunctional stressed CD56bright state susceptible to TME-induced immunosuppression and a cytotoxic TME-resistant effector CD56dim state were commonly enriched across tumor types, the ratio of which was predictive of patient outcome in malignant melanoma and osteosarcoma. This resource may inform the design of new NK cell therapies and can be extended through transfer learning to interrogate new datasets from experimental perturbations or disease conditions.
Project description:CXCL9, an IFN-γ inducible chemokine, has been reported to play versatile roles in tumor-host interrelationships. However, little is known about its role in intrahepatic cholangiocarcinoma (iCCA). Here, we aimed to elucidate the prognostic and biological implications of CXCL9 in iCCA. Endogenous CXCL9 expression and the number of tumor-infiltrating lymphocytes were immunohistochemically assessed in resection specimens. These data were validated in mice treated by silencing CXCL9 with short hairpin RNA. In addition, the induction of endogenous CXCL9 and the effects of CXCL9 on tumor biological behaviors were evaluated in human cholangiocarcinoma cell lines. Immunohistochemical analyses revealed that high CXCL9 expression was closely correlated with prolonged postoperative survival and a large number of tumor-infiltrating natural killer (NK) cells. In fact, due to the trafficking of total and tumor necrosis factor-related apoptosis-inducing ligand-expressing NK cells into tumors, CXCL9-sufficient cells were less tumorigenic in the liver than CXCL9-deficient cells in mice. Although CXCL9 involvement in tumor growth and invasion abilities differed across cell lines, it did not exacerbate these abilities in CXCL9-expressing cell lines. We showed that CXCL9 was useful as a prognostic marker. Our findings also suggested that CXCL9 upregulation might offer a therapeutic strategy for treating CXCL9-expressing iCCA by augmenting anti-tumor immune surveillance.
Project description:Tumor-infiltrating leukocytes are often induced by the cancer microenvironment to display a protumor, proangiogenic phenotype. This "polarization" has been described for several myeloid cells, in particular macrophages. Natural killer (NK) cells represent another population of innate immune cells able to infiltrate tumors. The role of NK in tumor progression and angiogenesis has not yet been fully investigated. Several studies have shown that tumor-infiltrating NK (here referred to as "TINKs") and tumor-associated NK (altered peripheral NK cells, which here we call "TANKs") are compromised in their ability to lysew tumor cells. Recent data have suggested that they are potentially protumorigenic and can also acquire a proangiogenic phenotype. Here we review the properties of TINKs and TANKs and compare their activities to that of NK cells endowed with a physiological proangiogenic phenotype, in particular decidual NK cells. We speculate on the potential origins of TINKs and TANKs and on the immune signals involved in their differentiation and polarization. The TINK and TANK phenotype has broad implications in the immune response to tumors, ranging from a deficient control of cancer and cancer stem cells to an altered crosstalk with other relevant players of the immune response, such as dendritic cells, to induction of cancer angiogenesis. With this recently acquired knowledge that has not yet been put into perspective, we point out new potential avenues for therapeutic intervention involving NK cells as a target or an ally in oncology.
Project description:Preterm infants are susceptible to infection and their defense against pathogens relies largely on innate immunity. The role of the complement system for the immunological vulnerability of preterm infants is less understood. Anaphylatoxin C5a and its receptors C5aR1 and -2 are known to be involved in sepsis pathogenesis, with C5aR1 mainly exerting pro-inflammatory effects. Our explorative study aimed to determine age-dependent changes in the expression of C5aR1 and C5aR2 in neonatal immune cell subsets. Via flow cytometry, we analyzed the expression pattern of C5a receptors on immune cells isolated from peripheral blood of preterm infants (n = 32) compared to those of their mothers (n = 25). Term infants and healthy adults served as controls. Preterm infants had a higher intracellular expression of C5aR1 on neutrophils than control individuals. We also found a higher expression of C5aR1 on NK cells, particularly on the cytotoxic CD56dim subset and the CD56- subset. Immune phenotyping of other leukocyte subpopulations revealed no gestational-age-related differences for the expression of and C5aR2. Elevated expression of C5aR1 on neutrophils and NK cells in preterm infants may contribute to the phenomenon of "immunoparalysis" caused by complement activation or to sustained hyper-inflammatory states. Further functional analyses are needed to elucidate the underlying mechanisms.
Project description:Tumor-infiltrating lymphocytes play an essential role in improving clinical outcome of neuroblastoma (NB) patients, but their relationship with other tumor-infiltrating immune cells in the T cell-inflamed tumors remains poorly investigated. Here we show that dendritic cells (DCs) and natural killer (NK) cells are positively correlated with T-cell infiltration in human NB, both at transcriptional and protein levels, and associate with a favorable prognosis. Multiplex imaging displays DC/NK/T cell conjugates in the tumor microenvironment of low-risk NB. Remarkably, this connection is further strengthened by the identification of gene signatures related to DCs and NK cells able to predict survival of NB patients and strongly correlate with the expression of PD-1 and PD-L1. In summary, our findings unveil a key prognostic role of DCs and NK cells and indicate their related gene signatures as promising tools for the identification of clinical biomarkers to better define risk stratification and survival of NB patients.
Project description:Natural killer (NK) cells are potential effector cells in cell-based cancer immunotherapy, particularly in the control of hematological malignancies. The chimeric antigen receptor (CAR) is an artificially modified fusion protein that consists of an extracellular antigen recognition domain fused to an intracellular signaling domain. T cells genetically modified with a CAR have demonstrated remarkable success in the treatment of hematological cancers. Compared to T cells, CAR-transduced NK cells (CAR-NK) exhibit several advantages, such as safety in clinical use, the mechanisms by which they recognize cancer cells, and their abundance in clinical samples. Human primary NK cells and the NK-92 cell line have been successfully transduced to express CARs against both hematological cancers and solid tumors in pre-clinical and clinical trials. However, many challenges and obstacles remain, such as the ex vivo expansion of CAR-modified primary NK cells and the low transduction efficiency of NK cells. Many strategies and technologies have been developed to improve the safety and therapeutic efficacy in CAR-based immunotherapy. Moreover, NK cells express a variety of activating receptors (NKRs), such as CD16, NKG2D, CD226 and NKp30, which might specifically recognize the ligands expressed on tumor cells. Based on the principle of NKR recognition, a strategy that targets NKRs is rapidly emerging. Given the promising clinical progress described in this review, CAR- and NKR-NK cell-based immunotherapy are likely promising new strategies for cancer therapy.
Project description:Natural killer (NK) cells are innate immune effector cells that play a crucial role in immune surveillance and the destruction of cancer cells. NK cells express a low-affinity receptor for the Fc or constant region of immunoglobulin G (FcγRIIIa) and multiple cytokine receptors that respond to antibody-coated targets and cytokines in the tumor microenvironment. In the present work, microarray gene expression analysis revealed that the IL-21 receptor (IL-21R) was strongly upregulated following FcR stimulation. The IL-21R was found to be upregulated on FcR-stimulated NK cells at the transcript level as determined by reverse transcription polymerase chain reaction (RT-PCR). Immunoblot analysis revealed that protein expression of the IL-21R peaked at 8 h post-stimulation of the FcR. Inhibition of the mitogen-activated protein kinase (MAPK) pathway downstream of the FcR blocked the induction of IL-21R expression. Increased expression of the IL-21R sensitized NK cells to IL-21 stimulation, as treatment of FcR-stimulated NK cells led to significantly increased phosphorylation of STAT1 and STAT3, as measured by intracellular flow cytometry and immunoblot analysis. Following FcR-stimulation, IL-21-activated NK cells were better able to mediate the lysis of trastuzumab-coated human epidermal growth factor receptor 2 (HER2+) SK-BR-3 tumor cells as compared to control-treated cells. Likewise, IL-21-induced NK cell secretion of IFNγ following exposure to antibody-coated tumor cells was enhanced following FcR-stimulation. The analysis of NK cells from patients receiving trastuzumab therapy for HER2+ cancer exhibited increased levels of the IL-21R following the administration of antibody suggesting that the presence of monoclonal antibody-coated tumor cells in vivo can stimulate the increased expression of IL-21R on NK cells.
Project description:Background: Tumor-infiltrating natural killer (NK) cells (TINKs) are crucial immune cells in tumor defense, and might be related to tumor prognosis. However, the results were discrepant among different studies. The present meta-analysis was performed to comprehensively assess the prognostic value of NK cell markers in solid tumor tissues. Methods: PubMed, Web of Science, and EMBASE were searched to identify original researches reporting the prognostic significance of TINKs in solid tumors. NK cell markers CD56, CD57, NKp30, and NKp46 were included in the analysis. The hazard ratios (HRs) and 95% confidence intervals (CIs) of pooled overall survival (OS), disease-free survival (DFS), metastasis-free survival (MFS), progression-free survival (PFS), and recurrence-free survival (RFS) were calculated by STATA software 14.0 to assess the prognostic significance. Results : Of the 56 included studies, there were 18 studies on CD56, 31 studies on CD57, 1 study on NKp30, and 7 studies on NKp46. High levels of CD56, CD57, NKp30, and NKp46 were significantly correlated with better OS of patients with solid malignancies (HR = 0.473, 95%CI: 0.315-0.710, p < 0.001; HR = 0.484, 95%CI: 0.380-0.616, p < 0.001; HR = 0.34, 95%CI: 0.14-0.80, p = 0.014; HR = 0.622, 95%CI: 0.470-0.821, p < 0.001, respectively). Our results also revealed that CD56, CD57, and NKp46 could act as independent prognostic predictors for favorable OS (HR = 0.372, 95%CI: 0.261-0.531, p < 0.001; HR = 0.525, 95%CI: 0.346-0.797, p = 0.003; HR = 0.559, 95%CI: 0.385-0.812, p = 0.002, respectively). Conclusions : Our results indicated that high levels of NK cell markers in solid tumor tissues could predict favorable prognosis for solid tumor patients.
Project description:Natural killer (NK) cells serve a critical role in the immune response against microbes and developing tumors. We have demonstrated that NK cells produce stimulatory cytokines (e.g., IFN-γ) in response to potent stimulation via immobilized IgG (to engage Fc receptors) and interleukin (IL)-12. CD25 is a component of the high-affinity IL-2R, which promotes NK cell activation in response to low doses of IL-2 such as those released by activated T cells. We hypothesized that stimulation of NK cells via IgG and IL-12 would enhance CD25 expression and promote NK cell anti-tumor activity in response to low-dose IL-2. It was confirmed that this dual stimulation strategy significantly enhanced NK cell CD25 expression compared to unstimulated cells or cells treated with IgG or IL-12 alone. Dual stimulated NK cells also were more responsive to low-dose IL-2. Dual stimulated NK cells subsequently treated with low-dose IL-2 (10 pg/mL) displayed enhanced intracellular signaling as indicated by increased pSTAT5 levels. IFN-γ production and cytotoxicity against K562 cells by NK cells stimulated with low-dose IL-2 was comparable to that of cells treated with high-dose IL-2 (10 ng/mL). Importantly, cells isolated from head and neck cancer patients receiving the mAb cetuximab and IL-12 on a clinical trial displayed increased CD25 expression following combination therapy compared to baseline. Altogether, these findings suggest that FcR and IL-12R co-stimulation induces expression of the high-affinity IL-2R and promotes NK cell anti-tumor activity.