Project description:Most knowledge about the structure, function, and evolution of early compound eyes is based on investigations in trilobites. However, these studies dealt mainly with the cuticular lenses and little was known about internal anatomy. Only recently some data on crystalline cones and retinula cells were reported for a Cambrian trilobite species. Here, we describe internal eye structures of two other trilobite genera. The Ordovician Asaphus sp. reveals preserved crystalline cones situated underneath the cuticular lenses. The same is true for the Devonian species Archegonus (Waribole) warsteinensis, which in addition shows the fine structure of the rhabdom in the retinula cells. These results suggest that an apposition eye with a crystalline cone is ancestral for Trilobita. The overall similarity of trilobite eyes to those of myriapods, crustaceans, and hexapods corroborates views of a phylogenetic position of trilobites in the stem lineage of Mandibulata.
Project description:Abstract Spinocerebellar ataxias (SCAs) are rare types of cerebellar ataxia with a dominant mode of inheritance. To date, 47 SCA subtypes have been identified, and the number of genes implicated in SCAs is continually increasing. Polyglutamine (polyQ) expansion diseases ( ATXN1/SCA1, ATXN2/SCA2, ATXN3/SCA3, CACNA1A/SCA6, ATXN7/SCA7, TBP/SCA17, and ATN1/DRPLA) are the most common group of SCAs. No preventive or curative treatments are currently available, but various therapeutic approaches, including RNA-targeting treatments, such as antisense oligonucleotides (ASOs), are being developed. Clinical trials of ASOs in SCA patients are already planned. There is, therefore, a need to identify valid outcome measures for such studies. In this review, we describe recent advances towards identifying appropriate biomarkers, which are essential for monitoring disease progression and treatment efficacy. Neuroimaging biomarkers are the most powerful markers identified to date, making it possible to reduce sample sizes for clinical trials. Changes on brain MRI are already evident at the premanifest stage in SCA1 and SCA2 carriers and are correlated with CAG repeat size. Other potential biomarkers have also been developed, based on neurological examination, oculomotor study, cognitive assessment, and blood and cerebrospinal fluid analysis. Longitudinal studies based on multimodal approaches are required to establish the relationships between parameters and to validate the biomarkers identified.
Project description:The trilobite head served multiple functions and was composed of several fused segments. Yet, the underlying organization of the trilobite head, and whether patterns are conserved across trilobites, remains unclear. Modeling the head as being composed of modules, or subunits that vary and thus have the potential to evolve semi-independently can reveal underlying patterns of organization. Hypotheses of modular organization based on the comparative developmental biology of arthropods were evaluated using geometric morphometrics. Two-dimensional (semi)landmark datasets collected from the cranidia of two Ordovician trilobite species, Calyptaulax annulata (Phacopida) and Cloacaspis senilis (Olenida sensu Adrain, 2011) were analyzed. The degree and pattern of modularity were assessed using the covariance ratio (CR), which compares the covariation within putative modules to the covariation between them, and the fit of different models was compared using an effect size measure derived from the CR. When treating the eyes as a distinct module, the best modular hypothesis identified for C. annulata shows the eyes and anteriormost region of the head integrated as a single module. The best modular hypotheses for C. senilis are more complex but the eyes still covary mostly strongly with the anterior part of the head. The latter is also the case for all other well-supported models for both species. These results can be interpreted as a developmental signal corresponding to the anteriormost ocular segment of early arthropods that is retained throughout development, despite any likely selective pressures related to functional needs.
Project description:The author would like to thank Professor Gustavo Caetano-Anollés from Department of Crop Sciences, University of Illinois for his interest in his work. We may sometimes observe that there is a noticeable difference between the anecdote people narrate about the implications of a scientific paper and the real conclusion of the paper. Prof. Gustavo Caetano-Anollés's response(1) is an ideal example of the same, where he has tried to make great hay about the implications of the article "Life and consciousness - The Vedāntic view."(2) The Vedāntic view subscribes neither to the views of 'Creationist Movement'/'Intelligent Design', nor it supports some splendid anti-science proposal. Vedāntic view refutes the dominant reductionistic view of life in modern biology by proposing a viable alternative concept of 'Organic Whole' and thus serves a scientific critique to the nescience (avidyā) that is practiced on the name of science.
Project description:AimsTo explore the utility of first-person viewpoint cameras at home, for recording mother and infant behaviour, and for reducing problems associated with participant reactivity, which represent a fundamental bias in observational research.MethodsWe compared footage recording the same play interactions from a traditional third-person point of view (3rd PC) and using cameras worn on headbands (first-person cameras [1st PCs]) to record first-person points of view of mother and infant simultaneously. In addition, we left the dyads alone with the 1st PCs for a number of days to record natural mother-child behaviour at home. Fifteen mothers with infants (3-12 months of age) provided a total of 14h of footage at home alone with the 1st PCs.ResultsCodings of maternal behaviour from footage of the same scenario captured from 1st PCs and 3rd PCs showed high concordance (kappa >0.8). Footage captured by the 1st PCs also showed strong inter-rater reliability (kappa=0.9). Data from 1st PCs during sessions recorded alone at home captured more 'negative' maternal behaviours per min than observations using 1st PCs whilst a researcher was present (mean difference=0.90 (95% CI 0.5-1.2, p<0.001 representing 1.5 SDs).Conclusion1st PCs offer a number of practical advantages and can reliably record maternal and infant behaviour. This approach can also record a higher frequency of less socially desirable maternal behaviours. It is unclear whether this difference is due to lack of need of the presence of researcher or the increased duration of recordings. This finding is potentially important for research questions aiming to capture more ecologically valid behaviours and reduce demand characteristics.
Project description:Breast cancer (BC) is the most common cancer in women, highly heterogeneous at both the clinical and molecular level. Radiation therapy (RT) represents an efficient modality to treat localized tumor in BC care, although the choice of a unique treatment plan for all BC patients, including RT, may not be the best option. Technological advances in RT are evolving with the use of charged particle beams (i.e. protons) which, due to a more localized delivery of the radiation dose, reduce the dose administered to the heart compared with conventional RT. However, few data regarding proton-induced molecular changes are currently available. The aim of this study was to investigate and describe the production of immunological molecules and gene expression profiles induced by proton irradiation. We performed Luminex assay and cDNA microarray analyses to study the biological processes activated following irradiation with proton beams, both in the non-tumorigenic MCF10A cell line and in two tumorigenic BC cell lines, MCF7 and MDA-MB-231. The immunological signatures were dose dependent in MCF10A and MCF7 cell lines, whereas MDA-MB-231 cells show a strong pro-inflammatory profile regardless of the dose delivered. Clonogenic assay revealed different surviving fractions according to the breast cell lines analyzed. We found the involvement of genes related to cell response to proton irradiation and reported specific cell line- and dose-dependent gene signatures, able to drive cell fate after radiation exposure. Our data could represent a useful tool to better understand the molecular mechanisms elicited by proton irradiation and to predict treatment outcome.
Project description:Although face recognition technology is currently integrated into industrial applications, it has open challenges, such as verification and identification from arbitrary poses. Specifically, there is a lack of research about face recognition in surveillance videos using, as reference images, mugshots taken from multiple Points of View (POVs) in addition to the frontal picture and the right profile traditionally collected by national police forces. To start filling this gap and tackling the scarcity of databases devoted to the study of this problem, we present the Face Recognition from Mugshots Database (FRMDB). It includes 28 mugshots and 5 surveillance videos taken from different angles for 39 distinct subjects. The FRMDB is intended to analyze the impact of using mugshots taken from multiple points of view on face recognition on the frames of the surveillance videos. To validate the FRMDB and provide a first benchmark on it, we ran accuracy tests using two CNNs, namely VGG16 and ResNet50, pre-trained on the VGGFace and VGGFace2 datasets for the extraction of face image features. We compared the results to those obtained from a dataset from the related literature, the Surveillance Cameras Face Database (SCFace). In addition to showing the features of the proposed database, the results highlight that the subset of mugshots composed of the frontal picture and the right profile scores the lowest accuracy result among those tested. Therefore, additional research is suggested to understand the ideal number of mugshots for face recognition on frames from surveillance videos.
Project description:Due to the high prevalence and long incubation periods often without symptoms, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected millions of individuals globally, causing the coronavirus disease 2019 (COVID-19) pandemic. Even with the recent approval of the anti-viral drug, remdesivir, and Emergency Use Authorization of monoclonal antibodies against S protein, bamlanivimab and casirimab/imdevimab, efficient and safe COVID-19 vaccines are still desperately demanded not only to prevent its spread but also to restore social and economic activities via generating mass immunization. Recent Emergency Use Authorization of Pfizer and BioNTech's mRNA vaccine may provide a pathway forward, but monitoring of long-term immunity is still required, and diverse candidates are still under development. As the knowledge of SARS-CoV-2 pathogenesis and interactions with the immune system continues to evolve, a variety of drug candidates are under investigation and in clinical trials. Potential vaccines and therapeutics against COVID-19 include repurposed drugs, monoclonal antibodies, antiviral and antigenic proteins, peptides, and genetically engineered viruses. This paper reviews the virology and immunology of SARS-CoV-2, alternative therapies for COVID-19 to vaccination, principles and design considerations in COVID-19 vaccine development, and the promises and roles of vaccine carriers in addressing the unique immunopathological challenges presented by the disease.