Unknown

Dataset Information

0

A role for astrocyte-derived amyloid β peptides in the degeneration of neurons in an animal model of temporal lobe epilepsy.


ABSTRACT: Kainic acid, an analogue of the excitatory neurotransmitter glutamate, can trigger seizures and neurotoxicity in the hippocampus and other limbic structures in a manner that mirrors the neuropathology of human temporal lobe epilepsy (TLE). However, the underlying mechanisms associated with the neurotoxicity remain unclear. Since amyloid-β (Aβ) peptides, which are critical in the development of Alzheimer's disease, can mediate toxicity by activating glutamatergic NMDA receptors, it is likely that the enhanced glutamatergic transmission that renders hippocampal neurons vulnerable to kainic acid treatment may involve Aβ peptides. Thus, we seek to establish what role Aβ plays in kainic acid-induced toxicity using in vivo and in vitro paradigms. Our results show that systemic injection of kainic acid to adult rats triggers seizures, gliosis and loss of hippocampal neurons, along with increased levels/processing of amyloid precursor protein (APP), resulting in the enhanced production of Aβ-related peptides. The changes in APP levels/processing were evident primarily in activated astrocytes, implying a role for astrocytic Aβ in kainic acid-induced toxicity. Accordingly, we showed that treating rat primary cultured astrocytes with kainic acid can lead to increased Aβ production/secretion without any compromise in cell viability. Additionally, we revealed that kainic acid reduces neuronal viability more in neuronal/astrocyte co-cultures than in pure neuronal culture, and this is attenuated by precluding Aβ production. Collectively, these results indicate that increased production/secretion of Aβ-related peptides from activated astrocytes can contribute to neurotoxicity in kainic acid-treated rats. Since kainic acid administration can lead to neuropathological changes resembling TLE, it is likely that APP/Aβ peptides derived from astrocytes may have a role in TLE pathogenesis.

SUBMITTER: Kodam A 

PROVIDER: S-EPMC8028321 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2010-06-11 | E-GEOD-6773 | biostudies-arrayexpress
| S-EPMC3808607 | biostudies-literature
2007-01-23 | GSE6773 | GEO
2007-01-23 | E-GEOD-6771 | biostudies-arrayexpress
2007-01-23 | E-GEOD-6834 | biostudies-arrayexpress
2014-12-04 | E-GEOD-63808 | biostudies-arrayexpress
| S-EPMC10846515 | biostudies-literature
| S-EPMC8379952 | biostudies-literature
| PRJNA647483 | ENA
| PRJNA647484 | ENA