Project description:Background and aimsMonitoring the immune response against SARS-CoV-2 is pivotal in the evaluation of long-term vaccine efficacy. Immunoglobulin G (IgG) antibodies represent an advisable tool to reach this goal, especially for the still poorly defined antibody trend induced by the new class of mRNA vaccines against SARS-CoV-2.Materials and methodsAnti-Spike RBD IgG antibodies were monitored in a cohort of healthcare workers at CRO Aviano, National Cancer Institute, through MAGLUMI® chemiluminescence assay, at 1 and 4 months after full-schedule of BNT162b2 or mRNA-1273 vaccination.ResultsAt 1 month after vaccination, 99.9% of 767 healthcare workers showed a reactive antibody response, which was inversely correlated with age, and positively associated with a previous history of COVID-19, and mRNA-1273 vaccination. Serological response was maintained in 99.6% of the 516 subjects monitored also at follow-up. An antibody decay from 559.8 AU/mL (IQR 359.7-845.7) to 92.7 AU/mL (IQR 65.1-148.6; p < 0.001) was observed, independently from age and sex.ConclusionOur data supported the ability of SARS-CoV-2 mRNA vaccines to induce at least a 4 months-lasting IgG response, even outside the rules of clinical trials. The antibody decay observed at follow-up suggested to deepen the immune response characterization to identify subjects with low anti-SARS-CoV-2 immunity possibly requiring a vaccination boost.
Project description:Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 infection induces an exacerbated inflammation driven by innate immunity components. Dendritic cells (DCs) play a key role in the defense against viral infections, for instance plasmacytoid DCs (pDCs), have the capacity to produce vast amounts of interferon-alpha (IFN-α). In COVID-19 there is a deficit in DC numbers and IFN-α production, which has been associated with disease severity. In this work, we described that in addition to the DC deficiency, several DC activation and homing markers were altered in acute COVID-19 patients, which were associated with multiple inflammatory markers. Remarkably, previously hospitalized and nonhospitalized patients remained with decreased numbers of CD1c+ myeloid DCs and pDCs seven months after SARS-CoV-2 infection. Moreover, the expression of DC markers such as CD86 and CD4 were only restored in previously nonhospitalized patients, while no restoration of integrin β7 and indoleamine 2,3-dyoxigenase (IDO) levels were observed. These findings contribute to a better understanding of the immunological sequelae of COVID-19.
Project description:BackgroundMost SARS-CoV-2 infected patients develop IgG antibodies within 2-3 weeks after symptom onset. Antibody levels have been shown to gradually decrease in the first months after infection, but few data are available at six months or later.MethodsA retrospective multi-center study was performed using 652 samples of 236 PCR-confirmed SARS-CoV-2 infected patients from 2 Belgian University hospitals. Patients were included if at least two samples were available (range 2-7 samples); including at least one sample collected 30 days or later after first positive PCR (range 0-240 days). Of those 236 patients, 19.1 % were classified as mild/asymptomatic (mild) and 80.9 % as moderate to critical (severe). IgG anti-nucleocapsid antibodies (anti-N) were measured using the Abbott Architect immunoassay.Results22.2 % of mild and 2.6 % of severe COVID-19 cases never seroconverted (p < 0.001). Of the mild patients who seroconverted 0-59 days after PCR; 18.8 %, 40.0 % and 61.1 % were seronegative in the windows 60-119 days, 120-179 days and 180-240 days after PCR, respectively. In severe patients, these numbers were 1.9 %, 10.8 % and 29.4 % respectively (p < 0.05 each). Antibody levels were significantly higher in severe patients compared to mild patients in each 60 day window (p < 0.001 each).ConclusionsSARS-CoV-2 anti-N IgG antibody levels steadily decreased after 2 months up to 8 months post PCR. Of severe COVID-19 patients, 70.6 % remained positive up to eight months after infection. Antibody levels were significantly lower in mild SARS-CoV-2 infected patients and 61.1 % became seronegative within 6 months after the first positive PCR.
Project description:BackgroundPatients on hemodialysis are at high-risk for complications derived from coronavirus disease 2019 (COVID-19). The present analysis evaluated the impact of a booster vaccine dose and breakthrough severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections on humoral immunity 3 months after the booster dose.MethodsThis is a multicentric and prospective study assessing immunoglobulin G anti-Spike antibodies 6 and 9 months after initial SARS-CoV-2 vaccination in patients on hemodialysis that had also received a booster dose before the 6-month assessment (early booster) or between the 6- and 9-month assessments (late booster). The impact of breakthrough infections, type of vaccine, time from the booster and clinical variables were assessed.ResultsA total of 711 patients [67% male, median age (range) 67 (20-89) years] were included. Of these, 545 (77%) received an early booster and the rest a late booster. At 6 months, 64 (9%) patients had negative anti-Spike antibody titers (3% of early booster and 29% of late booster patients, P = .001). At 9 months, 91% of patients with 6-month negative response had seroconverted and there were no differences in residual prevalence of negative humoral response between early and late booster patients (0.9% vs 0.6%, P = .693). During follow-up, 35 patients (5%) developed breakthrough SARS-CoV-2 infection. Antibody titers at 9 months were independently associated with mRNA-1273 booster (P = .001), lower time from booster (P = .043) and past breakthrough SARS-CoV-2 infection (P < .001).ConclusionsIn hemodialysis patients, higher titers of anti-Spike antibodies at 9 months were associated with mRNA-1273 booster, lower time from booster and past breakthrough SARS-CoV-2 infection.
Project description:ObjectiveTo follow serological immune responses of front-line healthcare workers after PCR-confirmed COVID-19 for a mean of 30 weeks, describe the time-course of SARS-CoV-2 spike protein-specific IgG, IgA and IgM levels and to identify associations of the immune response with symptoms, demographic parameters and severity of disease.MethodsAnti-SARS-CoV-2 S protein-specific IgG, IgA and IgM antibodies were measured at three time points during the 30-week follow-up. COVID-19-specific symptoms were assessed with standardized questionnaires.Results95% of the participants mounted an IgG response with only modest decline after week 12. IgG-type antibodies were still detectable in almost 90% of the subjects at 30 weeks. IgA and IgM responses were less robust and antibody titers decreased more rapidly. At 30 weeks, only 25% still had detectable IgA-type and none had IgM-type antibodies. Higher age and higher disease severity were independently associated with higher IgG antibody levels, albeit with wide variations.ConclusionSerological immune responses after COVID-19 show considerable inter-individual variability, but show an association with increasing age and higher severity of disease. IgG-type anti-SARS-CoV-2 antibodies remain positive in 90% of the individuals 30 weeks after onset of symptoms.
Project description:We aimed to investigate the immunoglobulin G response and neutralizing activity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) among primary health care workers (PHCW) in France and assess the association between the neutralizing activity and several factors, including the coronavirus disease 2019 (COVID-19) vaccination scheme. A cross-sectional survey was conducted between 10 May 2021 and 31 August 2021. Participants underwent capillary blood sampling and completed a questionnaire. Sera were tested for the presence of antibodies against the nucleocapsid (N) protein and the S-1 portion of the spike (S) protein and neutralizing antibodies. In total, 1612 PHCW were included. The overall seroprevalences were: 23.6% (95% confidence interval (CI) 21.6-25.7%) for antibodies against the N protein, 94.7% (93.6-95.7%) for antibodies against the S protein, and 81.3% (79.4-83.2%) for neutralizing antibodies. Multivariate regression analyses showed that detection of neutralizing antibodies was significantly more likely in PHCW with previous SARS-CoV-2 infection than in those with no such history among the unvaccinated (odds ratio (OR) 16.57, 95% CI 5.96-59.36) and those vaccinated with one vaccine dose (OR 41.66, 95% CI 16.05-120.78). Among PHCW vaccinated with two vaccine doses, the detection of neutralizing antibodies was not significantly associated with previous SARS-CoV-2 infection (OR 1.31, 95% CI 0.86-2.07), but was more likely in those that received their second vaccine dose within the three months before study entry than in those vaccinated more than three months earlier (OR 5.28, 95% CI 3.51-8.23). This study highlights that previous SARS-CoV-2 infection and the time since vaccination should be considered when planning booster doses and the design of COVID-19 vaccine strategies.
Project description:BackgroundDeveloping an understanding of the antibody response, seroprevalence, and seroconversion from natural infection and vaccination against SARS-CoV-2 will give way to a critical epidemiological tool to predict reinfection rates, identify vulnerable communities, and manage future viral outbreaks. To monitor the antibody response on a larger scale, we need an inexpensive, less invasive, and high throughput method.MethodsHere we investigate the use of oral mucosal fluids from individuals recovered from SARS-CoV-2 infection to monitor antibody response and persistence over a 12-month period. For this cohort study, enzyme-linked immunosorbent assays (ELISAs) were used to quantify anti-Spike(S) protein IgG antibodies in participants who had prior SARS-CoV-2 infection and regularly (every 2-4 weeks) provided both serum and oral fluid mucosal fluid samples for longitudinal antibody titer analysis.ResultsIn our study cohort (n=42) with 17 males and 25 females with an average age of 45.6 +/- 19.3 years, we observed no significant change in oral mucosal fluid IgG levels across the time course of antibody monitoring. In oral mucosal fluids, all the participants who initially had detectable antibodies continued to have detectable antibodies throughout the study.ConclusionsBased on the results presented here, we have shown that oral mucosal fluid-based assays are an effective, less invasive tool for monitoring seroprevalence and seroconversion, which offers an alternative to serum-based assays for understanding the protective ability conferred by the adaptive immune response from viral infection and vaccination against future reinfections.
Project description:The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a pandemic of the respiratory disease coronavirus disease 2019 (COVID-19). Antibody testing is essential to identify persons exposed to the virus and potentially in predicting disease immunity. 183 COVID-19 patients (68 of whom required mechanical ventilation) and 41 controls were tested for plasma IgG, IgA and IgM against the SARS-CoV-2 S1, S2, receptor binding domain (RBD) and N proteins using the MILLIPLEX ® SARS-CoV-2 Antigen Panel. Plasma cytokines were concurrently measured using the MILLIPLEX® MAP Human Cytokine/Chemokine/Growth Factor Panel A. As expected the 183 COVID-19 positive patients had high levels of IgG, IgA and IgM anti-SARS-CoV-2 antibodies against each of the viral proteins. Sensitivity of anti-S1 IgG increased from 60% to 93% one week after symptom onset. S1-IgG and S1-IgA had specificities of 98% compared to the 41 COVID-19 negative patients. The 68 ventilated COVID-19 positive patients had higher antibody levels than the 115 COVID-19 positive patients who were not ventilated. IgG antibody levels against S1 protein had the strongest positive correlation to days from symptom onset. There were no statistically significant differences in IgG, IgA and IgM antibodies against S1 based on age. We found that patients with the highest levels of anti-SARS-CoV-2 antibodies had the lowest viral load in the nasopharynx. Finally there was a correlation of high plasma IL-10 with low anti-SARS-CoV-2 antibodies. Anti-SARS-CoV-2 antibody levels, as measured by a novel antigen panel, increased within days after symptom onset, achieving > 90% sensitivity and specificity within one week, and were highest in patients who required mechanical ventilation. Antibody levels were inversely associated with viral load but did not differ as a function of age. The correlation of high IL-10 with low antibody response suggests a potentially suppressive role of this cytokine in the humoral immune response in COVID-19.
Project description:BackgroundIgG anti-spike (S) antibodies arise after SARS-CoV-2 infection as well as vaccination. Levels of IgG anti-S are linked to neutralizing antibody titers and protection against (re)infection.MethodsWe measured IgG anti-S and surrogate neutralizing antibody kinetics against Wild Type (WT) and 4 Variants of Concern (VOC) in health care workers (HCW) 3 and 10 months after natural infection ("infection", n=83) or vaccination (2 doses of BNT162b2) with ("hybrid immunity", n=17) or without prior SARS-CoV-2 infection ("vaccination", n=97).ResultsThe humoral immune response in the "vaccination" cohort was higher at 3 months, but lower at 10 months, compared to the "infection" cohort due to a faster decline. The "hybrid immunity" cohort had the highest antibody levels at 3 and 10 months with a slower decline compared to the "vaccination" cohort. Surrogate neutralizing antibody levels (expressed as %inhibition of ACE-2 binding) showed a linear relation with log10 of IgG anti-S against WT and four VOC. IgG anti-S corresponding to 90% inhibition ranged from 489 BAU/mL for WT to 1756 BAU/mL for Beta variant. Broad pseudoneutralization predicted live virus neutralization of Omicron BA.1 in 20 randomly selected high titer samples.ConclusionsHybrid immunity resulted in the strongest humoral immune response. Antibodies induced by natural infection decreased more slowly than after vaccination, resulting in higher antibody levels at 10 months compared to vaccinated HCW without prior infection. There was a linear relationship between surrogate neutralizing activity and log10 IgG anti-S for WT and 4 VOC, although some VOC showed reduced sensitivity to pseudoneutralization.