Project description:The causes of coagulopathy associated with COVID-19 disease are poorly understood. We aimed to investigate the relationship between markers of endothelial activation, intravascular hemolysis, coagulation, and organ damage in COVID-19 patients and study their association with disease severity and mortality. We conducted a retrospective study of 181 hospitalized COVID-19 patients randomly selected with equal distribution of survivors and non-survivors. Patients who died had significantly lower ADAMTS13 activity, significantly higher LDH, schistocytes and von Willebrand Factor levels compared to patients discharged alive. Only 30% of patients with an initial ADAMTS13 activity <43% survived vs. 60% with ADAMTS13 ?43% who survived. In conclusion, COVID-19 may manifest as a TMA-like illness in a subset of hospitalized patients. Presence of schistocytes on admission may warrant a work-up for TMA. These findings indicate the need for future investigation to study the relationship between endothelial and coagulation activation and the efficacy of TMA treatments in COVID-19.
Project description:Thrombotic microangiopathy can manifest in a diverse range of diseases and is characterized by thrombocytopenia, microangiopathic hemolytic anemia, and organ injury, including AKI. It can be associated with significant morbidity and mortality, but a systematic approach to investigation and prompt initiation of supportive management and, in some cases, effective specific treatment can result in good outcomes. This review considers the classification, pathology, epidemiology, characteristics, and pathogenesis of the thrombotic microangiopathies, and outlines a pragmatic approach to diagnosis and management.
Project description:Coronavirus disease-2019 (COVID-19) triggers systemic infection with involvement of the respiratory tract. There are some patients developing haemostatic abnormalities during their infection with a considerably increased risk of death. Patients (n = 85) with SARS-CoV-2 infection attending the University Medical Center, Mainz, from 3 March to 15 May 2020 were retrospectively included in this study. Data regarding demography, clinical features, treatment and laboratory parameters were analyzed. Twenty patients were excluded for assessment of disseminated intravascular coagulation (DIC) and thrombotic microangiopathy (TMA) due to lack of laboratory data. COVID-19 patients (n = 65) were investigated, 19 with uncomplicated, 29 with complicated, and 17 with critical course; nine (13.8%) died. Seven patients showed overt DIC according to the ISTH criteria. The fibrinogen levels dropped significantly in these patients, although not below 100 mg/dl. Hallmarks of TMA, such as thrombocytopenia and microangiopathic haemolytic anaemia, were not detected in any of our COVID-19 patients. ADAMTS13 activity was mildly to moderately reduced in 4/22 patients, all having strongly elevated procalcitonin levels. DIC occurred in 7/65 COVID-19 patients but fibrinogen and platelet consumption were compensated in almost all. ADAMTS13 assays excluded TTP and hallmarks of classic TMA were absent in all investigated patients. We hypothesize that the lacking erythrocyte fragmentation and only mild platelet consumption in severe COVID-19 are due to a microangiopathy predominantly localized to the alveolar microcirculation with a low blood pressure gradient.
Project description:Thrombotic microangiopathy (TMA) is a syndrome of microangiopathic hemolytic anemia and thrombocytopenia with end-organ dysfunction. Although the advent of plasma exchange, immunosuppression, and complement inhibition has improved morbidity and mortality for primary TMAs, the management of secondary TMAs, particularly drug-induced TMA, remains less clear. TMA related to cancer drugs disrupts the antineoplastic treatment course, increasing the risk of cancer progression. Chemotherapeutic agents such as mitomycin-C, gemcitabine, and platinum-based drugs as well as targeted therapies such as antiangiogenesis agents and proteasome inhibitors have been implicated in oncotherapy-associated TMA. Among TMA subtypes, drug-induced TMA is less well-understood. Treatment generally involves withdrawal of the offending agent and supportive care targeting blood pressure and proteinuria reduction. Immunosuppression and therapeutic plasma exchange have not shown clear benefit. The terminal complement inhibitor, eculizumab, has shown promising results in some cases of chemotherapy-associated TMA including in re-exposure. However, the data are limited, and unlike in primary atypical hemolytic uremic syndrome, the role of complement in the pathogenesis of drug-induced TMA is unclear. Larger multicenter studies and unified definitions are needed to elucidate the extent of the problem and potential treatment strategies.
Project description:BackgroundPregnancies in patients with complement gene variant-mediated thrombotic microangiopathy (cTMA) are challenging, and pregnancies in such patients after kidney transplantation (KTX) are even more so.MethodsWe identified nine pregnancies following KTX of three genetically high-risk cTMA patients enrolled in the Vienna thrombotic microangiopathy cohort. Preventive plasma therapy was used in three pregnancies, and one patient had ongoing eculizumab (ECU) therapy during two pregnancies.ResultsSeven out of nine pregnancies (78%) resulted in the delivery of healthy children. The other two included one early abortion at gestational Week 12 during ongoing ECU therapy and one late foetal death at gestational Week 33 + 3, most likely not related to complement dysregulation. Kidney transplant function after delivery remained stable in all but one pregnancy. In the aforementioned case, a severe cTMA flare occurred after delivery despite use of preventive plasma infusions. Kidney graft function could be rescued in this patient by ECU. As such, successful pregnancies can be accomplished in kidney transplant recipients (KTRs) with a history of cTMA. We used preemptive plasma therapy or ongoing ECU treatment in selected cases.ConclusionsThus, becoming pregnant can be encouraged in KTRs with native kidney cTMA. Extensive preconception counselling, however, is mandatory in such cases.
Project description:Thrombotic microangiopathy (TMA) is a pathological process involving thrombocytopenia, microangiopathic haemolytic anaemia and microvascular occlusion. TMA is common to haemolytic uraemic syndrome (HUS) associated with shiga toxin or invasive pneumococcal infection, atypical HUS (aHUS), thrombotic thrombocytopenic purpura (TTP) and other disorders including malignant hypertension. HUS complicating infection with shiga toxin-producing Escherichia coli (STEC) is a significant cause of acute renal failure in children worldwide, occurring sporadically or in epidemics. Studies in aHUS have revealed genetic and acquired factors leading to dysregulation of the alternative complement pathway. TTP has been linked to reduced activity of the ADAMTS13 cleaving protease (typically with an autoantibody to ADAMTS13) with consequent disruption of von Willebrand factor multimer processing. However, the convergence of pathogenic pathways and clinical overlap create diagnostic uncertainty, especially at initial presentation. Furthermore, recent developments are challenging established management protocols. This review addresses the current understanding of molecular mechanisms underlying TMA, relating these to clinical presentation with an emphasis on renal manifestations. A diagnostic and therapeutic approach is presented, based on international guidelines, disease registries and published trials. Early treatment remains largely empirical, consisting of plasma replacement/exchange with the exception of childhood STEC-HUS or pneumococcal sepsis. Emerging therapies such as the complement C5 inhibitor eculizumab for aHUS and rituximab for TTP are discussed, as is renal transplantation for those patients who become dialysis-dependent as a result of aHUS.