Unknown

Dataset Information

0

Optical characteristics of type-II hexagonal-shaped GaSb quantum dots on GaAs synthesized using nanowire self-growth mechanism from Ga metal droplet.


ABSTRACT: We report the growth mechanism and optical characteristics of type-II band-aligned GaSb quantum dots (QDs) grown on GaAs using a droplet epitaxy-driven nanowire formation mechanism with molecular beam epitaxy. Using transmission electron microscopy and scanning electron microscopy images, we confirmed that the QDs, which comprised zinc-blende crystal structures with hexagonal shapes, were successfully grown through the formation of a nanowire from a Ga droplet, with reduced strain between GaAs and GaSb. Photoluminescence (PL) peaks of GaSb capped by a GaAs layer were observed at 1.11 eV, 1.26 eV, and 1.47 eV, assigned to the QDs, a wetting-like layer (WLL), and bulk GaAs, respectively, at the measurement temperature of 14 K and excitation laser power of 30 mW. The integrated PL intensity of the QDs was significantly stronger than that of the WLL, which indicated well-grown GaSb QDs on GaAs and the generation of an interlayer exciton, as shown in the power- and temperature-dependent PL spectra, respectively. In addition, time-resolved PL data showed that the GaSb QD and GaAs layers formed a self-aligned type-II band alignment; the temperature-dependent PL data exhibited a high equivalent internal quantum efficiency of 15 ± 0.2%.

SUBMITTER: Baik M 

PROVIDER: S-EPMC8032789 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8279736 | biostudies-literature
| S-EPMC8289304 | biostudies-literature
| S-EPMC7506537 | biostudies-literature
| S-EPMC5438389 | biostudies-literature
| S-EPMC3968990 | biostudies-literature
| S-EPMC7075894 | biostudies-literature
| S-EPMC6463245 | biostudies-literature
| S-EPMC5458553 | biostudies-literature
| S-EPMC7331710 | biostudies-literature
| S-EPMC5433560 | biostudies-literature