Project description:Pediatric cancers often mimic fetal tissues and express proteins normally silenced postnatally that could serve as immune targets. We developed T cells expressing chimeric antigen receptors (CARs) targeting glypican-2 (GPC2), a fetal antigen expressed on neuroblastoma (NB) and several other solid tumors. CARs engineered using standard designs control NBs with transgenic GPC2 overexpression, but not those expressing clinically relevant GPC2 site density (∼5,000 molecules/cell, range 1-6 × 103). Iterative engineering of transmembrane (TM) and co-stimulatory domains plus overexpression of c-Jun lowered the GPC2-CAR antigen density threshold, enabling potent and durable eradication of NBs expressing clinically relevant GPC2 antigen density, without toxicity. These studies highlight the critical interplay between CAR design and antigen density threshold, demonstrate potent efficacy and safety of a lead GPC2-CAR candidate suitable for clinical testing, and credential oncofetal antigens as a promising class of targets for CAR T cell therapy of solid tumors.
Project description:BackgroundThe receptor tyrosine kinases TAM family (TYRO3, AXL, and MERTK) are highly expressed in multiple forms of cancer cells and tumor-associated macrophages and promote the development of cancers including pancreatic tumor. Targeting TAM receptors could be a promising therapeutic option.MethodsWe designed a novel CAR based on the extracellular domain of growth arrest-specific protein 6 (GAS6), a natural ligand for all TAM members. The ability of CAR-T to kill pancreatic cancer cells is tested in vitro and in vivo, and the safety is evaluated in mice and nonhuman primate.ResultsGAS6-CAR-T cells efficiently kill TAM-positive pancreatic cancer cell lines, gemcitabine-resistant cancer cells, and cancer stem-like cells in vitro. GAS6-CAR-T cells also significantly suppressed the growth of PANC1 xenografts and patient-derived xenografts in mice. Furthermore, these CAR-T cells did not induce obvious side effects in nonhuman primate or mice although the CAR was demonstrated to recognize mouse TAM.ConclusionsOur findings indicate that GAS6-CAR-T-cell therapy may be effective for pancreatic cancers with low toxicity.
Project description:Triple-negative breast cancer (TNBC) accounts for 15-20% of all breast cancer cases. Due to the lack of expression of well-known molecular targets [estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2)], there is a need for more alternative treatment approaches in TNBC. Chimeric antigen receptor (CAR)-T cell-based immunotherapy treatment is one of the latest treatment technologies with outstanding therapeutic advances in the past decade, especially in the treatment of hematologic malignancies, but the therapeutic effects of CAR-T cells against solid tumors have not yet shown significant clinical benefits. Identification of highly specific CAR-T targets in solid tumors is also crucial for its successful treatment. CD22 is reported to be a multifunctional receptor that is mainly expressed on the surface of mature B-cells (lymphocytes) and is also highly expressed in most B-cell malignancies. This study aimed to investigate the expression of CD22 in TNBC. Bioinformatic analysis was performed to evaluate the expression of CD22 in breast carcinoma and normal tissues. RNA-seq data of normal and breast carcinoma patients were downloaded from The Cancer Genome Atlas (TCGA), and differential gene expression was performed using R language. Additionally, online bioinformatics web tools (GEPIA and TNM plot) were used to evaluate the expression of CD22 in breast carcinoma and normal tissues. Western blot (WB) analysis and immunofluorescence (IF) were performed to characterize the expression of CD22 in TNBC cell lines. Immunohistochemical (IHC) staining was performed on tumor specimens from 97 TNBC patients for CD22 expression. Moreover, statistical analysis was performed to analyze the association of clinical pathological parameters with CD22 expression. Correlation analysis between overall survival data of TNBC patients and CD22 expression was also performed. Differential gene expression analysis of TCGA data revealed that CD22 is among the upregulated differentially expressed genes (DEGs) with high expression in breast cancer, as compared to normal breast tissues. WB and IF analysis revealed high expression of CD22 in TNBC cell lines. IHC results also showed that approximately 62.89% (61/97) of TNBC specimens were stained positive for CD22. Cell membrane expression of CD22 was evident in 23.71% (23/97) of TNBC specimens, and 39.18% (38/97) of TNBC specimens showed cytoplasmic/membrane expression, while 37.11% (36/97) specimens were negative for CD22. Furthermore, significant associations were found between the size of tumors in TNBC patients and CD22 expression, which unveils its potential as a prognostic biomarker. No significant correlation was found between the overall survival of TNBC patients and CD22 expression. In conclusion, we demonstrated for the first time that CD22 is highly expressed in TNBC. Based on our findings, we anticipated that CD22 could be used as a prognostic biomarker in TNBC, and it might be a potential CAR-T target in TNBC for whom few therapeutic options exist. However, more large-scale studies and clinical trials will ensure its potential usefulness as a CAR-T target in TNBC.
Project description:Although CD19 CAR T therapy has attained encouraging clinical outcomes worldwide, leukemia relapse after this therapy is associated with particular poor prognosis and has become an urgent problem to be solved. In consideration of the possible genetic or transcriptomic mechanisms underlying relapse, leukemia samples before CAR T cell infusion and after relapse were subjected to transcriptome sequencing
Project description:T cell-engaging therapies involving bispecific T cell engager (BiTE) and chimeric antigen receptor T (CAR-T) cells have achieved great success in the treatment of hematological tumors. However, the paucity of ideal cell surface molecules that can be targeted on glioblastoma (GBM) partially reduces the immunotherapeutic efficacy. Recently, high expression of Fn14 has been reported in several solid tumors, so the strategy of exploiting this specific antigen for GBM immunotherapy is worth studying. Consequently, we constructed Fn14× CD3 BiTE and Fn14-specific CAR-T cells and investigated their cytotoxic activity against GBM in vitro and in vivo. First, expression of Fn14 was confirmed in glioma tissues and GBM cells. Then, we designed Fn14-specific BiTE and CAR-T cells and tested their cytotoxicity in GBM cell cultures and mouse models of GBM. Fn14 was highly expressed in GBM tissues and cell lines, while it was undetectable in normal brain samples. Fn14× CD3 BiTE, Fn14 CAR-T cells and Fn14 CAR-T/IL-15 cells were antigen-specific and highly cytotoxic, showing good antitumor activity in vitro and causing significant regression of established solid tumors in xenograft models. However, the xenografts treated with Fn14 CAR-T cells regrew, whereas xenografts treated with Fn14 CAR-T/IL-15 cells did not. IL-15 engineering augmented the antitumor activity of Fn14 CAR-T cells and resulted in significant antitumor effects similar to those of Fn14× CD3 BiTE. Our results suggest that Fn14 is an appropriate target for GBM. Anti-Fn14 BiTE and Fn14-specific CAR-T/IL-15 cells may be exciting immunotherapeutic options for malignant brain cancer.
Project description:The prognosis of patients with large B-cell lymphoma (LBCL) that progresses after treatment with chimeric antigen receptor (CAR) T-cell therapy targeting CD19 (CAR19) is poor. We report on the first 3 consecutive patients with autologous CAR19-refractory LBCL who were treated with a single infusion of autologous 1 × 106 CAR+ T cells per kilogram targeting CD22 (CAR22) as part of a phase 1 dose-escalation study. CAR22 therapy was relatively well tolerated, without any observed nonhematologic adverse events higher than grade 2. After infusion, all 3 patients achieved complete remission, with all responses continuing at the time of last follow-up (mean, 7.8 months; range, 6-9.3). Circulating CAR22 cells demonstrated robust expansion (peak range, 85.4-350 cells per microliter), and persisted beyond 3 months in all patients with continued radiographic responses and corresponding decreases in circulating tumor DNA beyond 6 months after infusion. Further accrual at a higher dose level in this phase 1 dose-escalation study is ongoing and will explore the role of this therapy in patients in whom prior CAR T-cell therapies have failed. This trial is registered on clinicaltrials.gov as #NCT04088890.
Project description:BackgroundCD19 chimeric antigen receptor (CAR) therapy has achieved impressive success in relapsed or refractory (R/R) B-cell malignancies, but relapse due to antigen escape is increasingly appearing reported. As the expression profile of CD22 is similar to that of CD19, CD22 has become a candidate target when CD19 CAR-T therapy fails.MethodsA novel CD22 CAR incorporating scFv derived from an HIB22 hybridoma which bound the first and second Ig-like extracellular domains of CD22 antigen was constructed. Preclinical investigation of the CD22 CAR-T therapy against B-cell malignancies was evaluated by coculturing CD22 CAR-T cells with tumor cell lines or primary blasts from patients in vitro and using a xenograft mouse model in vivo. Further clinical study of CD22/CD19 CAR-T sequential therapy was conducted in 4 R/R adult B-cell acute lymphoblastic leukemia (B-ALL) patients.ResultsThe novel CD22 CAR-T treatment had specific cytotoxicity to CD22 + target cells, and the survival time of mice in the CD22 CAR-T treatment group was significantly prolonged. Furthermore, it's validated that sequential CD22/CD19 CAR-T therapy was significantly superior than single CD19 or CD22 CAR-T treatment in a relapse xenograft model. All 4 patients achieved complete remission (CR) with negative minimal residual disease (MRD), including 3 patients who had received prior CD19-related immunotherapy. The proliferation of CD19 and CD22 CAR-T cells was observed respectively in vivo, and 3 of the 4 patients experienced cytokine release syndrome (CRS); 2 of these patients had grade 1 CRS and 1 had grade 3 CRS. Long term follow-up showed that 3 of the 4 (75%) patients had sustained CR for up to 1 year. Analysis of antigen expression in the relapsed patients demonstrated that loss or diminution of CD19 and CD22 expression might cause antigen escape from CAR-T surveillance.ConclusionsIn summary, the novel CD22 CAR-T therapy was validated with antitumor effects both in vitro and in vivo. Furthermore, our study demonstrated the safety and robust efficacy of sequential CD22/CD19 CAR-T therapy in xenograft models and clinical trials, especially as the salvage treatment for R/R B-ALL patients with antigen loss or in whom anti-CD19 related immunotherapy failure failed.Trial registrationChinese Clinical Trial Registry (ChiCTR): ChiCTR1900025419, Supplementarily registered 26 August, 2019.
Project description:Vδ1T cells, a rare subset of γδT cells, hold promise for treating solid tumors. Unlike conventional T cells, they recognize tumor antigens independently of the MHC antigen-presentation pathway, making them a potential “off-the-shelf” cell therapy product. However, isolation and activation of Vδ1T cells is challenging, which has limited their clinical investigation. Here, we developed a large-scale clinical-grade manufacturing process for Vδ1T cells and validated the therapeutic potential of B7-H3-CAR-modified Vδ1T cells in treating solid tumors. Co-expression of interleukin-2 with the B7-H3-CAR led to durable anti-tumor activity of Vδ1T cells in vitro and in vivo. In multiple subcutaneous and orthotopic mouse xenograft tumor models, a single intravenous administration of the CAR-Vδ1T cells resulted in complete tumor regression. These modified cells demonstrated significant in vivo expansion and robust homing ability to tumors, akin to natural tissue-resident immune cells.Additionally, the B7-H3-CAR-Vδ1T cells exhibited a favorable safety profile. In conclusion, B7-H3-CAR-modified Vδ1T cells represent a promising strategy for treating solid tumors.
Project description:The prognosis of patients with acute myeloid leukemia (AML) remains dismal, highlighting the need for novel innovative treatment strategies. The application of chimeric antigen receptor (CAR) T-cell therapy to patients with AML has been limited, in particular by the lack of a tumor-specific target antigen. CD70 is a promising antigen to target AML, as it is expressed on most leukemic blasts, whereas little or no expression is detectable in normal bone marrow samples. To target CD70 on AML cells, we generated a panel of CD70-CAR T cells that contained a common single-chain variable fragment (scFv) for antigen detection, but differed in size and flexibility of the extracellular spacer and in the transmembrane and the costimulatory domains. These CD70scFv CAR T cells were compared with a CAR construct that contained human CD27, the ligand of CD70 fused to the CD3ζ chain (CD27z). The structural composition of the CAR strongly influenced expression levels, viability, expansion, and cytotoxic capacities of CD70scFv-based CAR T cells, but CD27z-CAR T cells demonstrated superior proliferation and antitumor activity in vitro and in vivo, compared with all CD70scFv-CAR T cells. Although CD70-CAR T cells recognized activated virus-specific T cells (VSTs) that expressed CD70, they did not prevent colony formation by normal hematopoietic stem cells. Thus, CD70-targeted immunotherapy is a promising new treatment strategy for patients with CD70-positive AML that does not affect normal hematopoiesis but will require monitoring of virus-specific T-cell responses.
Project description:CD39, expressed by tumor-infiltrating lymphocytes (TILs), is a marker to identify tumor-reactive T cells, which is frequently associated with stronger antitumor activity than bystander T cells in a variety of malignancies. Therefore, CD39 could be a promising marker for identifying the active antitumor immune cells used for cellular immunotherapy. To test this possibility, we constructed the hepatitis B virus (HBV) surface protein-specific chimeric antigen receptor T cells (HBVs-CAR-T cells) and generated the personalized tumor-reactive CD8+ T cells. We subsequently assessed their antitumor efficiency mainly with a co-culture system for autologous HBVs+ HCC organoid and T cells. We found that both CD39+ HBVs-CAR-T and CD39+ personalized tumor-reactive CD8+ T cells induced much more apoptosis in HCC organoids. Although the exhaustion status of CAR-T cells increased in CD39+ CAR-T cells, triple knockdown of PD-1, Tim-3, and Lag-3 with shRNAs further enhanced antitumor activity in CD39+ CAR-T cells. Furthermore, these CD39+ CAR-T cells exerted an increased secretion of interferon-γ and stronger antitumor effect in a patient-derived xenograft mouse model. Our findings demonstrated that CD39 could be a promising biomarker to enrich active immune cells and become an indicator marker for evaluating the prognosis of immunotherapy for HCC patients.