Project description:The identification of molecular genetic biomarkers considerably increased our current understanding of glioma genesis, prognostic evaluation, and treatment planning. In glioblastoma, the most malignant intrinsic brain tumor entity in adults, the promoter methylation status of the gene encoding for the repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) indicates increased efficacy of current standard of care, which is concomitant and adjuvant chemoradiotherapy with the alkylating agent temozolomide. In the elderly, MGMT promoter methylation status has recently been introduced to be a predictive biomarker that can be used for stratification of treatment regimes. This review gives a short summery of epidemiological, clinical, diagnostic, and treatment aspects of patients who are currently diagnosed with glioblastoma. The most important molecular genetic markers and epigenetic alterations in glioblastoma are summarized. Special focus is given to the physiological function of DNA methylation-in particular, of the MGMT gene promoter, its clinical relevance, technical aspects of status assessment, its correlation with MGMT mRNA and protein expressions, and its place within the management cascade of glioblastoma patients.
Project description:The repair protein O6-methylguanine-DNA methyltransferase (MGMT) is regulated epigenetically, mainly by the methylation of the MGMT promoter. MGMT promoter methylation status has emerged as a prognostic and predictive biomarker for patients with newly diagnosed glioblastoma (GBM). However, a strong negative correlation between MGMT promoter methylation and MGMT protein expression cannot be applied as a rule for all GBM patients. In order to investigate if the DNA methylation status of MGMT enhancers is associated with MGMT promoter methylation, MGMT expression, and the overall survival (OS) of GBM patients, we established assays based on high-resolution melting analysis and pyrosequencing for one intragenic and three intergenic MGMT enhancers. For CpGs in an enhancer located 560 kb upstream of the MGMT promoter, we found a significant negative correlation between the methylation status and MGMT protein levels of GBM samples expressing MGMT. The methylation status of CpGs in the intragenic enhancer (hs696) was strongly negatively correlated with MGMT promoter methylation and was significantly higher in MGMT-expressing GBM samples than in MGMT-non-expressing GBM samples. Moreover, low methylation of CpGs 01-03 and CpGs 09-13 was associated with the longer OS of the GBM patients. Our findings indicate an association between MGMT enhancer methylation and MGMT promoter methylation, MGMT protein expression, and/or OS.
Project description:CpG methylation within the O6-methylguanine-DNA-methyltransferase (MGMT) promoter is associated with enhanced survival of glioblastoma multiforme (GBM) patients treated with temozolomide (TMZ). Although MGMT promoter is methylated in approximately 50% of GBM, several studies have reported a lack of correlation between MGMT methylation and protein expression levels and consequently inaccurate discrimination of TMZ sensitive and resistant patients. To understand the limitations of currently used assays, TMZ responsiveness of 13 GBM xenograft lines was correlated with MGMT protein expression and MGMT promoter methylation determined by (1) standard methylation-specific polymerase chain reaction (MS-PCR), (2) quantitative MS-PCR (qMS-PCR), and (3) bisulfite sequencing. For each xenograft line, mice with established intracranial xenografts were treated with vehicle control or TMZ (66 mg/kgx5 days), and TMZ response was defined as relative prolongation in median survival for TMZ-treated versus control-treated mice. The relative survival benefit with TMZ was inversely related to MGMT protein expression (r=-0.75; P=0.003) and directly correlated with qMS-PCR (r=0.72; P=0.006). There was a direct correlation between MGMT methylation signal by qMS-PCR and the number of methylated CpG sites within the region amplified by MS-PCR (r=0.78, P=0.002). However, bisulfite sequencing revealed heterogeneity in the extent of CpG methylation in those tumors with a robust qMS-PCR signal. Three of the 4 GBM lines with a qMS-PCR signal greater than 10% had at least 1 unmethylated CpG site, while only one line was fully methylated at all 12 CpG sites. These data highlight one potential limitation of the evaluation of MGMT methylation by MS-PCR assay and suggest that more detailed evaluation of methylation at individual CpG sites relative to TMZ response may be worth pursuing.
Project description:Background:O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status is a predictive biomarker in glioblastoma. We investigated whether this marker furthermore defines a molecularly distinct tumor subtype with clinically different outcome. Methods:We analyzed copy number variation (CNV) and methylation profiles of 1095 primary and 92 progressive isocitrate dehydrogenase wildtype glioblastomas, including paired samples from 49 patients. DNA mutation data from 182 glioblastoma samples of The Cancer Genome Atlas (TCGA) and RNA expression from 107 TCGA and 55 Chinese Glioma Genome Atlas samples were analyzed. Results:Among untreated glioblastomas, MGMT promoter methylated (mMGMT) and unmethylated (uMGMT) tumors did not show different CNV or specific gene mutations, but a higher mutation count in mMGMT tumors. We identified 3 methylation clusters. Cluster 1 showed the highest average methylation and was enriched for mMGMT tumors. Seventeen genes including gastrulation brain homeobox 2 (GBX2) were found to be hypermethylated and downregulated on the mRNA level in mMGMT tumors. In progressive glioblastomas, platelet derived growth factor receptor alpha (PDGFRA) and GLI2 amplifications were enriched in mMGMT tumors. Methylated MGMT tumors gain PDGFRA amplification of PDGFRA, whereas uMGMT tumors with amplified PDGFRA frequently lose this amplification upon progression. Glioblastoma patients surviving <6 months and with mMGMT harbored less frequent epidermal growth factor receptor (EGFR) amplifications, more frequent TP53 mutations, and a higher tumor necrosis factor-nuclear factor-kappaB (TNF-NF?B) pathway activation compared with patients surviving >12 months. Conclusions:MGMT promoter methylation status does not define a molecularly distinct glioblastoma subpopulation among untreated tumors. Progressive mMGMT glioblastomas and mMGMT tumors of patients with short survival tend to have more unfavorable molecular profiles.
Project description:We attempted to establish a magnetic resonance imaging (MRI)-based radiomic model for stratifying prognostic subgroups of newly diagnosed glioblastoma (GBM) patients and predicting O (6)-methylguanine-DNA methyltransferase promotor methylation (pMGMT-met) status of the tumor. Preoperative MRI scans from 201 newly diagnosed GBM patients were included in this study. A total of 489 texture features including the first-order feature, second-order features from 162 datasets, and location data from 182 datasets were collected. Supervised principal component analysis was used for prognostication and predictive modeling for pMGMT-met status was performed based on least absolute shrinkage and selection operator regression. 22 radiomic features that were correlated with prognosis were used to successfully stratify patients into high-risk and low-risk groups (p = 0.004, Log-rank test). The radiomic high- and low-risk stratification and pMGMT status were independent prognostic factors. As a matter of fact, predictive accuracy of the pMGMT methylation status was 67% when modeled by two significant radiomic features. A significant survival difference was observed among the combined high-risk group, combined intermediate-risk group (this group consists of radiomic low risk and pMGMT-unmet or radiomic high risk and pMGMT-met), and combined low-risk group (p = 0.0003, Log-rank test). Radiomics can be used to build a prognostic score for stratifying high- and low-risk GBM, which was an independent prognostic factor from pMGMT methylation status. On the other hand, predictive accuracy of the pMGMT methylation status by radiomic analysis was insufficient for practical use.
Project description:BackgroundThe relative contribution of isocitrate dehydrogenase mutations (mIDH) and O6-methylguanine-DNA methyltransferase promoter methylation (methMGMT) as biomarkers in glioblastoma remain poorly understood.MethodsWe investigated the association between methMGMT and mIDH with progression free survival and overall survival in a prospectively collected molecular registry of 274 glioblastoma patients.ResultsFor glioblastoma patients who underwent Temozolomide and Radiation Therapy, OS and PFS was most favorable for those with tumors harboring both mIDH and methMGMT (median OS: 35.8 mo, median PFS: 27.5 mo); patients afflicted glioblastomas with either mIDH or methMGMT exhibited intermediate OS and PFS (mOS: 36 and 17.1 mo; mPFS: 12.2 mo and 9.9 mo, respectively); poorest OS and PFS was observed in wild type IDH1 (wtIDH1) glioblastomas that were MGMT promoter unmethylated (mOS: 15 mo, mPFS: 9.7 mo). For patients with wtIDH glioblastomas, TMZ+RT was associated with improved OS and PFS relative to patients treated with RT (OS: 15.4 mo v 9.6 mo, p < 0.001; PFS: 9.9 mo v 6.5 mo, p < 0.001). While TMZ+RT and RT treated mIDH patients exhibited improved overall survival relative to those with wtIDH, there were no differences between the TMZ+RT or RT group. These results suggest that mIDH1 conferred resistance to TMZ. Supporting this hypothesis, exogenous expression of mIDH1 in independent astrocytoma/glioblastoma lines resulted in a 3-10 fold increase in TMZ resistance after long-term passage.ConclusionsOur study demonstrates IDH mutation and MGMT promoter methylation status independently associate with favorable outcome in TMZ+RT treated glioblastoma patients. However, these biomarkers differentially impact clinical TMZ response.
Project description:Temozolomide (TMZ) is an important first-line treatment for glioblastoma (GBM), but there are limitations to TMZ response in terms of durability and dependence on the promoter methylation status of the DNA repair gene O6-methylguanine DNA methyltransferase (MGMT). MGMT-promoter-hypermethylated (MGMT-M) GBMs are more sensitive to TMZ than MGMT-promoter-hypomethylated (MGMT-UM) GBMs. Moreover, TMZ resistance is inevitable even in TMZ-sensitive MGMT-M GBMs. Hence, epigenetic reprogramming strategies are desperately needed in order to enhance TMZ response in both MGMT-M and MGMT-UM GBMs. In this study, we present novel evidence that the epigenetic reactivation of Tumor Suppressor Candidate 3 (TUSC3) can reprogram sensitivity of GBM stem cells (GSCs) to TMZ irrespective of MGMT promoter methylation status. Interrogation of TCGA patient GBM datasets confirmed TUSC3 promoter regulation of TUSC3 expression and also revealed a strong positive correlation between TUSC3 expression and GBM patient survival. Using a combination of loss-of-function, gain-of-function and rescue studies, we demonstrate that TUSC3 reactivation is associated with enhanced TMZ response in both MGMT-M and MGMT-UM GSCs. Further, we provide novel evidence that the demethylating agent 5-Azacitidine (5-Aza) reactivates TUSC3 expression in MGMT-M GSCs, whereas the combination of 5-Aza and MGMT inhibitor Lomeguatrib is necessary for TUSC3 reactivation in MGMT-UM GSCs. Lastly, we propose a pharmacological epigenetic reactivation strategy involving TUSC3 that leads to significantly prolonged survival in MGMT-M and MGMT-UM orthotopic GSCs models. Collectively, our findings provide a framework and rationale to further explore TUSC3-mediated epigenetic reprogramming strategies that could enhance TMZ sensitivity and outcomes in GBM. Mechanistic and translational evidence gained from such studies could contribute towards optimal design of impactful trials for MGMT-UM GBMs that currently do not have good treatment options.
Project description:BackgroundEpigenetic inhibition of the O6-methylguanine-DNA-methyltransferase (MGMT) gene has emerged as a clinically relevant prognostic marker in glioblastoma (GBM). Methylation of the MGMT promoter has been shown to increase chemotherapy efficacy. While traditionally reported as a binary marker, recent methodological advancements have led to quantitative methods of measuring promoter methylation, providing clearer insight into its functional relationship with survival.MethodsA CLIA assay and bisulfite sequencing was utilized to develop a quantitative, 17-point, MGMT promoter methylation index. GBMs of 240 newly diagnosed patients were sequenced and risk for mortality was assessed. Nonlinearities were captured by fitting splines to Cox proportional hazard models and plotting smoothed residuals. Covariates included age, Karnofsky performance status, IDH1 mutation, and extent of resection.ResultsMedian follow-up time and progression-free survival were 16 and 9 months, respectively. A total of 176 subjects experienced death. A one-unit increase in promoter CpG methylation resulted in a 4% reduction in hazard (95% CI 0.93-0.99, P < .005). GBM patients with low levels of promoter methylation (1-6 CpG sites) fared markedly worse (HR = 1.62, 95% CI 1.03-2.54, P < .036) than individuals who were unmethylated. Subjects with medium levels of promoter methylation (7-12 sites) had the greatest reduction in hazard (HR = 0.48, 95% CI 0.29-0.80, P < .004), followed by individuals in the highest promoter methylation tertile (HR = 0.62, 95% CI 0.40-0.97, P < .035).ConclusionsOur findings suggest that the relationship between the extent of MGMT promoter methylation and survival in GBM may be nonlinear. These findings challenge the current understanding of MGMT and underlines the clinical importance of determining its prognostic utility. Potential limitations include censoring, sample size, and extraneous mutations.
Project description:Introduction: O6 -methylguanine-methyltransferase (MGMT) promoter methylation and isocitrate dehydrogenase (IDH) mutation status are important prognostic factors for patients with glioblastoma. There are conflicting reports about a differential topographical distribution of glioblastoma with vs. without MGMT promoter methylation, possibly caused by molecular heterogeneity in glioblastoma populations. We initiated this study to re-evaluate the topographical distribution of glioblastoma with vs. without MGMT promoter methylation in light of the updated WHO 2016 classification. Methods: Preoperative T2-weighted/FLAIR and postcontrast T1-weighted MRI scans of patients aged 18 year or older with IDH wildtype glioblastoma were collected. Tumors were semi-automatically segmented, and the topographical distribution between glioblastoma with vs. without MGMT promoter methylation was visualized using frequency heatmaps. Then, voxel-wise differences were analyzed using permutation testing with Threshold Free Cluster Enhancement. Results: Four hundred thirty-six IDH wildtype glioblastoma patients were included; 211 with and 225 without MGMT promoter methylation. Visual examination suggested that when compared with MGMT unmethylated glioblastoma, MGMT methylated glioblastoma were more frequently located near bifrontal and left occipital periventricular area and less frequently near the right occipital periventricular area. Statistical analyses, however, showed no significant difference in topographical distribution between MGMT methylated vs. MGMT unmethylated glioblastoma. Conclusions: This study re-evaluated the topographical distribution of MGMT promoter methylation in 436 newly diagnosed IDH wildtype glioblastoma, which is the largest homogenous IDH wildtype glioblastoma population to date. There was no statistically significant difference in anatomical localization between MGMT methylated vs. unmethylated IDH wildtype glioblastoma.
Project description:Recent studies suggest an overrepresentation of MGMT promoter methylated tumors in females with IDHwt glioblastoma (GBM) compared to males, with a subsequent better response to alkylating treatment. To reveal sex-bound associations that may have gone unnoticed in the original analysis, we re-analyzed two previously published clinical cohorts. One was the multicenter Nordic trial of elderly patients with GBM, randomizing patients into three different treatment arms, including 203 cases with known MGMT promoter methylation status. The other was a population-based study of 179 patients with IDHwt GBM, receiving concomittant radiotherapy and chemotherapy with temozolomide. Cohorts were stratified by sex to test the hypothesis that female sex in combination with MGMT promoter methylation constitutes a subgroup with more favorable outcome. There was a significantly larger proportion of MGMT promoter methylation and better outcome for female patients with MGMT promoter methylated tumors. Results were confirmed in 257 TCGA-derived IDHwt GBM with known sex and MGMT status. These results confirm that patient sex in combination with MGMT promoter methylation is a key determinant in GBM to be considered prior to treatment decisions. Our study also illustrates the need for stratification to identify such sex-bound associations.