Project description:Down syndrome (DS) is the most common genetic syndrome associated with immune defects. The extent of immune dysregulation in DS is substantial, spanning the innate and adaptive systems and including anomalies in: T and B cells, monocytes, neutrophil chemotaxis, circulating cytokines, and suboptimal antibody responses which all contribute to an increased risk of infections, poorer clinical outcomes and chronic inflammation in this vulnerable cohort. Other aspects of innate immunity may also be abnormal and contribute to the increased morbidity and warrant further interrogation such as: gamma delta T cell function, the inflammasome, Toll-like receptors and their pathways. Pharmacotherapies such as pavilizumab, pneumococcal and influenza immunizations, as well as potential immunoprophylactic agents such as pidotimod, azithromycin and Broncho-Vaxom may help alleviate the infectious consequences. Children with DS need to be managed with a heightened sense of awareness and urgency in the setting of sepsis and signs of chronic inflammation need regular screening and appropriate follow up.
Project description:Clonal hematopoiesis of indeterminate potential (CHIP), defined as the presence of somatic mutations in cancer-related genes in blood cells in the absence of hematological cancer, has recently emerged as an important risk factor for several age-related conditions, especially cardiovascular disease. CHIP is strongly associated with normal aging, but its role in premature aging syndromes is unknown. Hutchinson-Gilford progeria syndrome (HGPS) is an ultra-rare genetic condition driven by the accumulation of a truncated form of the lamin A protein called progerin. HGPS patients exhibit several features of accelerated aging and typically die from cardiovascular complications in their early teens. Previous studies have shown normal hematological parameters in HGPS patients, except for elevated platelets, and low levels of lamin A expression in hematopoietic cells relative to other cell types in solid tissues, but the prevalence of CHIP in HGPS remains unexplored. To investigate the potential role of CHIP in HGPS, we performed high-sensitivity targeted sequencing of CHIP-related genes in blood DNA samples from a cohort of 47 HGPS patients. As a control, the same sequencing strategy was applied to blood DNA samples from middle-aged and elderly individuals, expected to exhibit a biological age and cardiovascular risk profile similar to HGPS patients. We found that CHIP is not prevalent in HGPS patients, in marked contrast to our observations in individuals who age normally. Thus, our study unveils a major difference between HGPS and normal aging and provides conclusive evidence that CHIP is not frequent in HGPS and, therefore, is unlikely to contribute to the pathophysiology of this accelerated aging syndrome.
Project description:Recent larger-scale studies of patients with cancer and longitudinal population cohorts have revealed how age-related expansions of mutant hematopoietic cells (clonal hematopoiesis [CH]) have differential associations with incident and prevalent cancers and their outcomes. Increasing recognition and deeper understanding of genetic subtypes of CH are yielding insights into the tumor-immune interface that may help to explain the heterogeneous impact of CH on tumorigenesis and treatment. Herein, we update the expanding influence of CH in precision oncology and propose important research and clinical questions to address to effectively manage and harness CH in oncology patients.
Project description:IntroductionDown syndrome (DS) is associated with immune dysregulation and a high risk of early onset Alzheimer's disease (AD). Complement is a key part of innate immunity and driver of pathological inflammation, including neuroinflammation in AD. Complement dysregulation has been reported in DS; however, the pattern of dysregulation and its relationship to AD risk is unclear.MethodsPlasma levels of 14 complement biomarkers were measured in 71 adults with DS and 46 controls to identify DS-associated dysregulation; impact of apolipoprotein E (APOE) ε4 genotype, single nucleotide polymorphisms (SNPs) in CLU and CR1, and dementia on complement biomarkers was assessed.ResultsPlasma levels of complement activation products (TCC, iC3b), proteins (C1q, C3, C9), and regulators (C1 inhibitor, factor H, FHR4, clusterin) were significantly elevated in DS versus controls while FI and sCR1 were significantly lower. In DS with AD (n = 13), C3 and FI were significantly decreased compared to non-AD DS (n = 58). Neither APOE genotype nor CLU SNPs impacted complement levels, while rs6656401 in CR1 significantly impacted plasma sCR1 levels.ConclusionsComplement is dysregulated in DS, likely reflecting the generalized immune dysregulation state; measurement may help identify inflammatory events in individuals with DS. Complement biomarkers differed in DS with and without AD and may aid diagnosis and/or prediction.HighlightsComplement is significantly dysregulated in plasma of people with DS who show changes in levels of multiple complement proteins compared to controls. People with DS and dementia show evidence of additional complement dysregulation with significantly lower levels of C3 and factor I compared to those without dementia. rs6656401 in CR1 was associated with significantly elevated sCR1 plasma levels in DS.
Project description:Using Illumina 450K arrays, 1.85% of all analyzed CpG sites were significantly hypermethylated and 0.31% hypomethylated in fetal Down syndrome (DS) cortex throughout the genome. The methylation changes on chromosome 21 appeared to be balanced between hypo- and hyper-methylation, whereas, consistent with prior reports, all other chromosomes showed 3-11 times more hyper- than hypo-methylated sites. Reduced NRSF/REST expression due to upregulation of DYRK1A (on chromosome 21q22.13) and methylation of REST binding sites during early developmental stages may contribute to this genome-wide excess of hypermethylated sites. Upregulation of DNMT3L (on chromosome 21q22.4) could lead to de novo methylation in neuroprogenitors, which then persists in the fetal DS brain where DNMT3A and DNMT3B become downregulated. The vast majority of differentially methylated promoters and genes was hypermethylated in DS and located outside chromosome 21, including the protocadherin gamma (PCDHG) cluster on chromosome 5q31, which is crucial for neural circuit formation in the developing brain. Bisulfite pyrosequencing and targeted RNA sequencing showed that several genes of PCDHG subfamilies A and B are hypermethylated and transcriptionally downregulated in fetal DS cortex. Decreased PCDHG expression is expected to reduce dendrite arborization and growth in cortical neurons. Since constitutive hypermethylation of PCDHG and other genes affects multiple tissues, including blood, it may provide useful biomarkers for DS brain development and pharmacologic targets for therapeutic interventions.
Project description:Peripheral immunity plays a key role in maintaining homeostasis and conferring crucial neuroprotective effects on the injured nervous system, while at the same time may contribute to increased vulnerability to neuropathic pain. Little is known about the reciprocal relationship between entrapment neuropathy and peripheral immunity. This study investigated immune profile in patients with carpal tunnel syndrome (CTS), the most prevalent entrapment neuropathy. All patients exhibited neurophysiological abnormalities in the median nerve, with the majority reporting neuropathic pain symptoms. We found a significant increase in serum CCL5, CXCL8, CXCL10 and VEGF, and in CD4+ central and effector memory T cells in CTS patients, as compared to healthy controls. CCL5 and VEGF were identified as having the highest power to discriminate between patients and controls. Interestingly, and contrary to the prevailing view of CCL5 as a pro-nociceptive factor, the level of circulating CCL5 was inversely correlated with neuropathic pain intensity and median nerve motor latency. In contrast, the level of central memory T cells was positively associated with abnormal neurophysiological findings. These results suggest that entrapment neuropathy is associated with adaptive changes in the homeostasis of memory T cells and an increase in systemic inflammatory modulating cytokines/chemokines, which potentially regulate neuropathic symptoms.
Project description:ObjectiveMost of the patients with Down syndrome (DS) develop Alzheimer's disease (AD) neuropathology by age 40. Although this increased susceptibility to AD in DS is thought to be primarily due to triplication of the amyloid precursor protein located on chromosome 21, the precise molecular mechanisms are not well understood. Recent evidence has implicated defective protein sorting and trafficking secondary to deficiencies in retromer complex proteins in AD pathogenesis. Thus, the objective of the present study is to assess the retromer complex system in DS.MethodsHuman postmortem brain tissue and fibroblasts from subjects with DS and healthy controls were examined for the various retromer protein components using Western blot analysis and reverse transcription quantitative polymerase chain reaction (RT-qPCR).ResultsRetromer recognition core proteins were significantly decreased in DS fibroblasts, and in both the hippocampi and cortices of young (age 15-40 years old) and aged (40-65 years old) subjects with DS compared with controls. Correlation analyses showed a significant inverse relationship between recognition core proteins and levels of soluble forms of Aβ 1-40 and 1-42 in both hippocampus (n = 33, Spearman = -0.59 to -0.38, p ≤ 0.03 for VPS35, VPS26, VPS29, and VPS26B) and cortex tissue (n = 57, Spearman = -0.46 to -0.27, p ≤ 0.04 for VPS35, VPS26, and VPS29) of the same patients.InterpretationWe conclude that dysregulation of the retromer complex system is an early event in the development of the AD-like pathology and cognitive decline in DS, and for this reason the system could represent a novel potential therapeutic target for DS. ANN NEUROL 2020 ANN NEUROL 2020;88:137-147.
Project description:Clonal hematopoiesis (CH) arises when mutations in the hematopoietic system confer a fitness advantage to specific clones, thereby favoring their disproportionate growth. The presence of CH increases with age and environmental exposures such as cytotoxic chemotherapy or radiotherapy. The most frequent mutations occur in epigenetic regulators, such as DNMT3A, TET2, and ASXL1, leading to dysregulation of tumor suppressor function, pathogen response, and inflammation. These dysregulated processes elevate risk of overall mortality, cardiovascular disease, and eventual hematologic malignancy (HM). CH is likely acting as an initiating event leading to HM when followed by cooperating mutations. However, further evidence suggests that CH exerts a bystander influence through its pro-inflammatory properties. Delineating the mechanisms that lead to the onset and expansion of CH as well as its contribution to risk of HM is crucial to defining a management and intervention strategy. In this review, we discuss the potential causes, consequences, technical considerations, and possible management strategies for CH in the context of HMs and pre-HMs.
Project description:Increased cortical thickness (CT) has been reported in Down syndrome (DS) during childhood and adolescence, but it remains unclear, which components of the neural architecture underpin these increases and if CT remains altered in adults. Among other factors, differences in CT measures could be driven by reduced tissue contrast between grey and white matter (GWC), which has been reported in neurodegenerative disorders, such as Alzheimer's disease. Using structural magnetic resonance imaging, we therefore examined differences in CT and GWC in 26 adults with DS, and 23 controls, to (1) examine between-group differences in CT in adulthood, (2) establish whether DS is associated with significant reductions in GWC, and (3) determine the influence of GWC variability on between-group differences in CT. As hypothesized, we observed that DS was accompanied by wide-spread increases in CT, and significantly reduced GWC in several large clusters distributed across the cortex. Out of all vertices with a significant between-group difference in CT, 38.50% also displayed a significant reduction in GWC. This percentage of overlap was also statistically significant and extremely unlikely to be obtained by chance (p = .0002). Differences in GWC thus seem to explain some, although not all, of the differences in CT observed in DS. In addition, our study is the first to extend previous in vivo reports of altered CT in DS during childhood and adolescence to older adults, implying that the regional pattern of neuroanatomical differences associated with DS remains stable across the lifespan.