Unknown

Dataset Information

0

QSAR-Co-X: an open source toolkit for multitarget QSAR modelling.


ABSTRACT: Quantitative structure activity relationships (QSAR) modelling is a well-known computational tool, often used in a wide variety of applications. Yet one of the major drawbacks of conventional QSAR modelling is that models are set up based on a limited number of experimental and/or theoretical conditions. To overcome this, the so-called multitasking or multitarget QSAR (mt-QSAR) approaches have emerged as new computational tools able to integrate diverse chemical and biological data into a single model equation, thus extending and improving the reliability of this type of modelling. We have developed QSAR-Co-X, an open source python-based toolkit (available to download at https://github.com/ncordeirfcup/QSAR-Co-X ) for supporting mt-QSAR modelling following the Box-Jenkins moving average approach. The new toolkit embodies several functionalities for dataset selection and curation plus computation of descriptors, for setting up linear and non-linear models, as well as for a comprehensive results analysis. The workflow within this toolkit is guided by a cohort of multiple statistical parameters and graphical outputs onwards assessing both the predictivity and the robustness of the derived mt-QSAR models. To monitor and demonstrate the functionalities of the designed toolkit, four case-studies pertaining to previously reported datasets are examined here. We believe that this new toolkit, along with our previously launched QSAR-Co code, will significantly contribute to make mt-QSAR modelling widely and routinely applicable.

SUBMITTER: Halder AK 

PROVIDER: S-EPMC8048082 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5811559 | biostudies-other
| S-EPMC10079087 | biostudies-literature
| S-EPMC5691161 | biostudies-literature
| S-EPMC8568273 | biostudies-literature
| S-EPMC7427913 | biostudies-literature
| S-EPMC6336923 | biostudies-literature
| S-EPMC11335788 | biostudies-literature
| S-EPMC6749653 | biostudies-literature
| S-EPMC3208608 | biostudies-literature
| S-EPMC5927706 | biostudies-literature