Project description:RationaleMUC5AC and MUC5B are the predominant gel-forming mucins in the mucus layer of human airways. Each mucin has distinct functions and site-specific expression. However, the regional distribution of expression and cell types that secrete each mucin in normal/healthy human airways are not fully understood.ObjectivesTo characterize the regional distribution of MUC5B and MUC5AC in normal/healthy human airways and assess which cell types produce these mucins, referenced to the club cell secretory protein (CCSP).MethodsMultiple airway regions from 16 nonsmoker lungs without a history of lung disease were studied. MUC5AC, MUC5B, and CCSP expression/colocalization were assessed by RNA in situ hybridization and immunohistochemistry in five lungs with histologically healthy airways. Droplet digital PCR and cell cultures were performed for absolute quantification of MUC5AC/5B ratios and protein secretion, respectively.Measurements and main resultsSubmucosal glands expressed MUC5B, but not MUC5AC. However, MUC5B was also extensively expressed in superficial epithelia throughout the airways except for the terminal bronchioles. Morphometric calculations revealed that the distal airway superficial epithelium was the predominant site for MUC5B expression, whereas MUC5AC expression was concentrated in proximal, cartilaginous airways. RNA in situ hybridization revealed MUC5AC and MUC5B were colocalized with CCSP-positive secretory cells in proximal superficial epithelia, whereas MUC5B and CCSP-copositive cells dominated distal regions.ConclusionsIn normal/healthy human airways, MUC5B is the dominant secretory mucin in the superficial epithelium and glands, with distal airways being a major site of expression. MUC5B and MUC5AC expression is a property of CCSP-positive secretory cells in superficial airway epithelia.
Project description:Glioblastoma patients are immunosuppressed, yet glioblastomas are highly infiltrated by monocytes/macrophages. Myeloid-derived suppressor cells (MDSC; immunosuppressive myeloid cells including monocytes) have been identified in other cancers and correlate with tumor burden. We hypothesized that glioblastoma exposure causes normal monocytes to assume an MDSC-like phenotype and that MDSC are increased in glioblastoma patients. Healthy donor human CD14(+) monocytes were cultured with human glioblastoma cell lines. Controls were cultured alone or with normal human astrocytes. After 48 hours, glioblastoma-conditioned monocytes (GCM) were purified using magnetic beads. GCM cytokine and costimulatory molecular expression, phagocytic ability, and ability to induce apoptosis in activated lymphocytes were assessed. The frequency of MDSC was assessed by flow cytometry in glioma patients' blood and in GCM in vitro. As predicted, GCM have immunosuppressive, MDSC-like features, including reduced CD14 (but not CD11b) expression, increased immunosuppressive interleukin-10, transforming growth factor-beta, and B7-H1 expression, decreased phagocytic ability, and increased ability to induce apoptosis in activated lymphocytes. Direct contact between monocytes and glioblastoma cells is necessary for complete induction of these effects. In keeping with our hypothesis, glioblastoma patients have increased circulating MDSC compared with normal donors and MDSC are increased in glioma-conditioned monocytes in vitro. To our knowledge, this has not been reported previously. Although further study is needed to directly characterize their origin and function in glioblastoma patients, these results suggest that MDSC may be an important contributor to systemic immunosuppression and can be modeled in vitro by GCM.
Project description:In acute myeloid leukemia (AML) and blast crisis (BC) chronic myeloid leukemia (CML) normal differentiation is impaired. Differentiation of immature stem/progenitor cells is critical for normal blood cell function. MicroRNAs (miRNAs or miRs) are small non-coding RNAs that interfere with gene expression by degrading messenger RNAs (mRNAs) or blocking protein translation. Aberrant miRNA expression is a feature of leukemia and miRNAs also play a significant role in normal hematopoiesis and differentiation. We have identified miRNAs differentially expressed in AML and BC CML and identified a new role for miR-150 in myeloid differentiation. Expression of miR-150 is low or absent in BC CML and AML patient samples and cell lines. We have found that expression of miR-150 in AML cell lines, CD34+ progenitor cells from healthy individuals, and primary BC CML and AML patient samples at levels similar to miR-150 expression in normal bone marrow promotes myeloid differentiation of these cells. MYB is a direct target of miR-150, and we have identified that the observed phenotype is partially mediated by MYB. In AML cell lines, differentiation of miR-150 expressing cells occurs independently of retinoic acid receptor ? (RARA) signaling. High-throughput gene expression profiling (GEP) studies of the AML cell lines HL60, PL21, and THP-1 suggest that activation of CEPBA, CEBPE, and cytokines associated with myeloid differentiation in miR-150 expressing cells as compared to control cells contributes to myeloid differentiation. These data suggest that miR-150 promotes myeloid differentiation, a previously uncharacterized role for this miRNA, and that absent or low miR-150 expression contributes to blocked myeloid differentiation in acute leukemia cells.
Project description:The angiotensin-converting enzyme 2 (ACE2) receptor is the gateway for SARS-CoV-2 to airway epithelium1,2 and the strong inflammatory response after viral infection is a hallmark in COVID-19 patients. Deciphering the regulation of the ACE2 gene is paramount for understanding the cell tropism of SARS-CoV-2 infection. Here we identify candidate regulatory elements in the ACE2 locus in human primary airway cells and lung tissue. Activating histone and promoter marks and Pol II loading characterize the intronic dACE2 and define novel candidate enhancers distal to the genuine ACE2 promoter and within additional introns. dACE2, and to a lesser extent ACE2, RNA levels increased in primary bronchial cells treated with interferons and this induction was mitigated by Janus kinase (JAK) inhibitors that are used therapeutically in COVID-19 patients. Our analyses provide insight into regulatory elements governing the ACE2 locus and highlight that JAK inhibitors are suitable tools to suppress interferon-activated genetic programs in bronchial cells.
Project description:RUNX3 is a transcription factor dysregulated in acute myeloid leukemia (AML). However, its role in normal myeloid development and leukemia is poorly understood. Here we investigate RUNX3 expression in both settings and the impact of its dysregulation on myelopoiesis. We found that RUNX3 mRNA expression was stable during hematopoiesis but decreased with granulocytic differentiation. In AML, RUNX3 mRNA was overexpressed in many disease subtypes, but downregulated in AML with core binding factor abnormalities, such as RUNX1::ETO. Overexpression of RUNX3 in human hematopoietic stem and progenitor cells (HSPC) inhibited myeloid differentiation, particularly of the granulocytic lineage. Proliferation and myeloid colony formation were also inhibited. Conversely, RUNX3 knockdown did not impact the myeloid growth and development of human HSPC. Overexpression of RUNX3 in the context of RUNX1::ETO did not rescue the RUNX1::ETO-mediated block in differentiation. RNA-sequencing showed that RUNX3 overexpression downregulates key developmental genes, such as KIT and RUNX1, while upregulating lymphoid genes, such as KLRB1 and TBX21. Overall, these data show that increased RUNX3 expression observed in AML could contribute to the developmental arrest characteristic of this disease, possibly by driving a competing transcriptional program favoring a lymphoid fate.
Project description:Recently, we have documented a hematopoietic NKL-code mapping physiological expression patterns of NKL homeobox genes in early hematopoiesis and in lymphopoiesis, which spotlights genes deregulated in lymphoid malignancies. Here, we enlarge this map to include normal NKL homeobox gene expressions in myelopoiesis by analyzing public expression profiling data and primary samples from developing and mature myeloid cells. We thus uncovered differential activities of six NKL homeobox genes, namely DLX2, HHEX, HLX, HMX1, NKX3-1 and VENTX. We further examined public expression profiling data of 251 acute myeloid leukemia (AML) and 183 myelodysplastic syndrome (MDS) patients, thereby identifying 24 deregulated genes. These results revealed frequent deregulation of NKL homeobox genes in myeloid malignancies. For detailed analysis we focused on NKL homeobox gene NANOG, which acts as a stem cell factor and is correspondingly expressed alone in hematopoietic progenitor cells. We detected aberrant expression of NANOG in a small subset of AML patients and in AML cell line NOMO-1, which served as a model. Karyotyping and genomic profiling discounted rearrangements of the NANOG locus at 12p13. But gene expression analyses of AML patients and AML cell lines after knockdown and overexpression of NANOG revealed regulators and target genes. Accordingly, NKL homeobox genes HHEX, DLX5 and DLX6, stem cell factors STAT3 and TET2, and the NOTCH-pathway were located upstream of NANOG while NKL homeobox genes HLX and VENTX, transcription factors KLF4 and MYB, and anti-apoptosis-factor MIR17HG represented target genes. In conclusion, we have extended the NKL-code to the myeloid lineage and thus identified several NKL homeobox genes deregulated in AML and MDS. These data indicate a common oncogenic role of NKL homeobox genes in both lymphoid and myeloid malignancies. For misexpressed NANOG we identified an aberrant regulatory network, which contributes to the understanding of the oncogenic activity of NKL homeobox genes.
Project description:The immunopathology of coronavirus disease 2019 (COVID-19) remains enigmatic, causing immunodysregulation and T cell lymphopenia. Monocytic myeloid-derived suppressor cells (M-MDSCs) are T cell suppressors that expand in inflammatory conditions, but their role in acute respiratory infections remains unclear. We studied the blood and airways of patients with COVID-19 across disease severities at multiple time points. M-MDSC frequencies were elevated in blood but not in nasopharyngeal or endotracheal aspirates of patients with COVID-19 compared with healthy controls. M-MDSCs isolated from patients with COVID-19 suppressed T cell proliferation and IFN-γ production partly via an arginase 1-dependent (Arg-1-dependent) mechanism. Furthermore, patients showed increased Arg-1 and IL-6 plasma levels. Patients with COVID-19 had fewer T cells and downregulated expression of the CD3ζ chain. Ordinal regression showed that early M-MDSC frequency predicted subsequent disease severity. In conclusion, M-MDSCs expanded in the blood of patients with COVID-19, suppressed T cells, and were strongly associated with disease severity, indicating a role for M-MDSCs in the dysregulated COVID-19 immune response.
Project description:Upregulation of Expression of the Ubiquitin Carboxyl Terminal Hydrolase L1 Gene in Human Airway Epithelium of Cigarette Smokers; The microarray data deposited here is from 11 HG-U133A GeneChips, from 5 normal non-smokers and 6 phenotypic normal smokers, large airways. Samples from the small airways of these individuals have been obtained and analyzed using the HG-U133A GeneChip; the small airway samples are in GEO Accession Number GSE 3320, and the data analysis is described in Harvey, B-G; Heguy, A.; Leopold, P.L.; Carolan, B.; Ferris, B. and Crystal R.G. Modification of Gene Expression of the Small Airway Epithelium in Response to Cigarette Smoking. J. Mol. Med (in press). These data are part of a study aimed at understanding how cigarette smoking modifies neuroendocrine cells, in which microarray analysis with TaqMan confirmation was used to assess airway epithelial samples obtained by fiberoptic bronchoscopy from 81 individuals (normal nonsmokers, normal smokers, smokers with early COPD and smokers with established COPD). Of 11 genes considered to be neuroendocrine cell-specific, only ubiquitin C-terminal hydrolase L1(UCHL1), a member of the ubiquitin proteasome pathway, was consistently upregulated in smokers compared to nonsmokers. Up-regulation of UCHL1 at the protein level was observed with immunohistochemistry of bronchial biopsies of smokers compared to nonsmokers. Interestingly, however, while UCHL1 expression was present only in neuroendocrine cells of the airway epithelium in nonsmokers, UCHL1 expression was also expressed in ciliated epithelial cells in smokers, an intriguing observation in light of recent observations that ciliated cells can are capable of transdifferentiating to other airway epithelium. In the context that UCHL1 is involved in the degradation of unwanted, misfolded or damaged proteins within the cell and is overexpressed in >50% of lung cancers, its overexpression in chronic smokers may represent an early event in the complex transformation from normal epithelium to overt malignancy. Experiment Overall Design: comparison of gene expression in airway epithelial cells of the large airways of phenotypic normal smokers vs normal non-smokers
Project description:Hematopoietic stem and progenitor cells (HSPCs) reside in a specialized niche that regulates their proliferative capacity and their fate. There is increasing evidence for similar roles of marrow niches on controlling the behavior of leukemic cells; however, whether normal hematopoietic stem cell (HSC) and leukemic cells reside in or functionally compete for the same marrow niche is unclear. We used the mixed lineage leukemia-AF9 (MLL-AF9) murine acute myeloid leukemia (AML) in a competitive repopulation model to investigate whether normal HSPC and leukemic cells functionally compete for the same marrow niches. Irradiated recipient mice were transplanted with fixed numbers of MLL-AF9 cells mixed with increasing doses of normal syngeneic whole bone marrow (WBM) or with purified HSPC (LSK). Survival was significantly increased and leukemic progression was delayed proportional to increasing doses of normal WBM or normal LSK cells in multiple independent experiments, with all doses of WBM or LSK cells studied above the threshold for rapid and complete hematopoietic reconstitution in the absence of leukemia. Confocal microscopy demonstrated nests of either leukemic cells or normal hematopoietic cells but not both in the marrow adjacent to endosteum. Early following transplantation, leukemic cells from animals receiving lower LSK doses were cycling more actively than in those receiving higher doses. These results suggest that normal HSPC and AML cells compete for the same functional niche. Manipulation of the niche could impact on response to antileukemic therapies, and the numbers of normal HSPC could impact on leukemia outcome, informing approaches to cell dose in the context of stem cell transplantation.
Project description:A panel of lectins was used to analyse glycoproteins of normal granulocytes and leukaemic myeloid cells. The glycoproteins of detergent-solubilized whole cells were separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and their lectin-binding properties determined by incubation of the fixed gels with radioiodinated lectins. Normal granulocytes and leukaemic myeloid cells in different stages of maturation possess a cell-surface sialic acid-rich glycoprotein of apparent mol.wt. 115 000 (GP115), that can be labelled by both the lactoperoxidase and periodate/NaB3H4 cell-surface labelling techniques. The sialoglycoprotein of leukaemic myeloblasts has a slightly lower apparent mol.wt., 112000 (GP112). After neuraminidase treatment before cell solubilization, both GP115 and GP112 bind the lectins from Arachis hypogaea (peanut) and Helix pomatia (snail) and have an increased apparent molecular weight of 125000. Two concanavalin A-binding glycoproteins of apparent mol.wts. 98000 and 90000 are present in leukaemic myeloblasts. Concanavalin A binding to these glycoproteins is decreased in more mature leukaemic cells and absent in granulocytes. As concanavalin A binding decreases in the maturer forms, there is a concomitant increase in the binding of Ricinus communis (castor bean) and Maclura aurantiaca (osage orange) lectins to these glycoproteins. Whole granulocytes, but not leukaemic myeloblasts, contain a major cell-surface concanavalin A binding glycoprotein of apparent mol.wt. 130000, which is labelled by the periodate/NaB3H4 technique. Concanavalin A binding to this glycoprotein increases as the morphology of leukaemic cells approaches that of mature granulocytes.