Puromycin-sensitive aminopeptidase is required for C2C12 myoblast proliferation and differentiation.
Ontology highlight
ABSTRACT: The ubiquitin-proteasome system is a major protein degradation pathway in the cell. Proteasomes produce several peptides that are rapidly degraded to free amino acids by intracellular aminopeptidases. Our previous studies reported that proteolysis via proteasomes and aminopeptidases is required for myoblast proliferation and differentiation. However, the role of intracellular aminopeptidases in myoblast proliferation and differentiation had not been clarified. In this study, we investigated the effects of puromycin-sensitive aminopeptidase (PSA) on C2C12 myoblast proliferation and differentiation by knocking down PSA. Aminopeptidase enzymatic activity was reduced in PSA-knockdown myoblasts. Knockdown of PSA induced impaired cell cycle progression in C2C12 myoblasts and accumulation of cells at the G2/M phase. Additionally, after the induction of myogenic differentiation in PSA-knockdown myoblasts, multinucleated circular-shaped myotubes with impaired cell polarity were frequently identified. Cell division cycle 42 (CDC42) knockdown in myoblasts resulted in a loss of cell polarity and the formation of multinucleated circular-shaped myotubes, which were similar to PSA-knockdown myoblasts. These data suggest that PSA is required for the proliferation of myoblasts in the growth phase and for the determination of cell polarity and elongation of myotubes in the differentiation phase.
Project description:Puromycin-sensitive aminopeptidase (E.C. 3.4.11.14, UniProt P55786), a zinc metallopeptidase belonging to the M1 family, degrades a number of bioactive peptides as well as peptides released from the proteasome, including polyglutamine. We report the crystal structure of PSA at 2.3 Ǻ. Overall, the enzyme adopts a V-shaped architecture with four domains characteristic of the M1 family aminopeptidases, but it is in a less compact conformation compared to most M1 enzymes of known structure. A microtubule binding sequence is present in a C-terminal HEAT repeat domain of the enzyme in a position where it might serve to mediate interaction with tubulin. In the catalytic metallopeptidase domain, an elongated active site groove lined with aromatic and hydrophobic residues and a large S1 subsite may play a role in broad substrate recognition. The structure with bound polyglutamine shows a possible interacting mode of this peptide, which is supported by mutation.
Project description:Cidofovir (HPMPC) is a broad-spectrum antiviral agent, currently used to treat AIDS-related human cytomegalovirus retinitis. Cidofovir has recognized therapeutic potential for orthopox virus infections, although its use is hampered by its inherent low oral bioavailability. Val-Ser-cyclic HPMPC (Val-Ser-cHPMPC) is a promising peptide prodrug which has previously been shown by us to improve the permeability and bioavailability of the parent compound in rodent models (Eriksson et al., 2008. Molecular Pharmaceutics 5, 598-609). Puromycin-sensitive aminopeptidase was partially purified from Caco-2 cell homogenates and identified as a prodrug activating enzyme for Val-Ser-cHPMPC. The prodrug activation process initially involves an enzymatic step where the l-Valine residue is removed by puromycin-sensitive aminopeptidase, a step that is bestatin-sensitive. Subsequent chemical hydrolysis results in the generation of cHPMPC. A recombinant puromycin-sensitive aminopeptidase was generated and its substrate specificity investigated. The k(cat) for Val-pNA was significantly lower than that for Ala-pNA, suggesting that some amino acids are preferred over others. Furthermore, the three-fold higher k(cat) for Val-Ser-cHPMPC as compared to Val-pNA suggests that the leaving group may play an important role in determining hydrolytic activity. In addition to its ability to hydrolyze a variety of substrates, these observations strongly suggest that puromycin-sensitive aminopeptidase is an important enzyme for activating Val-Ser-cHPMPC in vivo. Taken together, our data suggest that puromycin-sensitive aminopeptidase makes an attractive target for future prodrug design.
Project description:Anoctamin 6 (Ano6) belongs to a conserved gene family (TMEM16) predicted to code for eight transmembrane proteins with putative Ca2+-activated chloride channel (CaCC) activity. Recent work revealed that disruption of ANO6 leads to a blood coagulation defect and impaired skeletal development. However, its function in skeletal muscle cells remains to be determined. By using a RNA interference mediated (RNAi) loss-of-function approach, we show that Ano6 regulates C2C12 myoblast proliferation. Ano6 is highly expressed in C2C12 myoblasts and its expression decreases upon differentiation. Knocking down Ano6 significantly reduces C2C12 myoblast proliferation but has minimal effect on differentiation. Ano6 deficiency significantly reduces ERK/AKT phosphorylation, which has been shown to be involved in regulation of cancer cell proliferation by another Anoctamin member. Taken together, our data demonstrate for the first time that Ano6 plays an essential role in C2C12 myoblast proliferation, likely via regulating the ERK/AKT signaling pathway.
Project description:BackgroundGASP-2 is a secreted multi-domain glycoprotein known as a specific inhibitor of myostatin and GDF-11. Here we investigate the role of GASP-2 on myogenesis and the effect of its glycosylation on its activity.MethodsGASP-2 overexpression or knockdown by shRNAs were carried out on C2C12 myoblasts cells. In silico analysis of GASP-2 protein was performed to identify its glycosylation sites. We produced a mouse recombinant GASP-2 protein in a prokaryotic system to obtain a fully deglycosylated protein allowing us to study the importance of this post-translational modification on GASP-2 activity.ResultsBoth mature and deglycosylated GASP-2 proteins increase C2C12 proliferation and differentiation by inhibiting the myostatin pathway. In silico and western-blot analyses revealed that GASP-2 presents one consensus sequence for N-glycosylation and six potential sites of mucin-type O-glycosylation.ConclusionsGASP-2 promotes myogenesis and thus independently of its glycosylation.General significanceThis is the first report demonstrating that GASP-2 promotes proliferation and differentiation of myoblasts by inhibiting the canonical pathway of myostatin.
Project description:Skeletal muscle cell differentiation is a multistage process extensively studied over the years. Even if great improvements have been achieved in defining biological process underlying myogenesis, many molecular mechanisms need still to be clarified.To further highlight this process, we studied cells at undifferentiated, intermediate and highly differentiated stages, and we analyzed, for each condition, morphological and proteomic changes. We also identified the proteins that showed statistical significant changes by a ESI-Q-TOF mass spectrometer. This work provides further evidence of the involvement of particular proteins in skeletal muscle development. Furthermore, the high level of expression of many heat shock proteins, suggests a relationship between differentiation and cellular stress. Intriguingly, the discovery of myogenesis-correlated proteins, known to play a role in apoptosis, suggests a link between differentiation and this type of cell death.
Project description:Setdb1, an H3-K9 specific histone methyltransferase, is associated with transcriptional silencing of euchromatic genes through chromatin modification. Functions of Setdb1 during development have been extensively studied in embryonic and mesenchymal stem cells as well as neurogenic progenitor cells. But the role of Sedtdb1 in myogenic differentiation remains unknown. In this study, we report that Setdb1 is required for myogenic potential of C2C12 myoblast cells through maintaining the expressions of MyoD and muscle-specific genes. We find that reduced Setdb1 expression in C2C12 myoblast cells severely delayed differentiation of C2C12 myoblast cells, whereas exogenous Setdb1 expression had little effect on. Gene expression profiling analysis using oligonucleotide micro-array and RNA-Seq technologies demonstrated that depletion of Setdb1 results in downregulation of MyoD as well as the components of muscle fiber in proliferating C2C12 cells. In addition, exogenous expression of MyoD reversed transcriptional repression of MyoD promoter-driven lucif-erase reporter by Setdb1 shRNA and rescued myogenic differentiation of C2C12 myoblast cells depleted of endogenous Setdb1. Taken together, these results provide new insights into how levels of key myogenic regulators are maintained prior to induction of differentiation.
Project description:BackgroundEnhanced intracellular Ca2+ signaling by stromal interaction molecule 1 (STIM1)-mediated store-operated Ca2+ entry (SOCE) is required for skeletal muscle differentiation. However, the contribution of STIM2, STIM1's analogue protein, on muscle cell differentiation has not been clearly elucidated. The present study aimed to explore the contribution of STIM2-mediated SOCE on C2C12 myoblast differentiation.MethodsChanges in STIM2 expression level (reverse transcription-polymerase chain reaction and Western blotting) and SOCE activity ([Ca2+]i measurement) were measured during 3 days of in vitro differentiation of C2C12 skeletal myoblast. Transcriptional regulation of STIM2 by nuclear factor of activated T cells, cytoplasmic (NFATc) overexpression was observed, and the effect of STIM2 knockdown on NFAT transcriptional activity (luciferase assay) and myoblast differentiation was quantified.ResultsIncrease of STIM2 protein level and enhanced SOCE activity were observed in differentiating myoblasts. Treatment with a SOCE blocker (2-APB) inhibited the differentiation. Overexpression of NFATc1 increased STIM2 expression and SOCE activity. Knockdown of STIM2 decreased NFAT transcriptional activity, SOCE activity, and differentiation of C2C12 myoblast.ConclusionIt is suggested that STIM2-activated SOCE controls C2C12 myoblast differentiation.
Project description:The catabolism of branched chain amino acids (BCAAs) is mainly carried out in skeletal muscle myofibers. It is mediated by branched chain aminotransferase 2 and branched chain alpha ketoacid dehydrogenase (BCKDH) in mitochondria for energy supply, especially during exercise. BCKDH kinase (BCKDK) is a negative regulator of BCAAs catabolism by its inhibitory phosphorylation of the BCKDH E1a subunit. The data presented in this article are related to the research article that we previously have reported entitled "Energy metabolism profile of the effects of amino acid treatment on skeletal muscle cells: Leucine inhibits glycolysis of myotubes" (Suzuki et al., 2020)[1]. In this report, we have demonstrated that 1hour treatment of BT2, an inhibitor of BCKDK, decreased the glycolysis of C2C12 differentiated myotubes compared to the control. Although BCAAs metabolism is basically assumed to be carried out in differentiated myofibers, BCKDK is expressed in both undifferentiated myoblasts and differentiated myotubes, and the biological and physiological significance of BCAAs metabolism in myoblasts is still unclear. Present data demonstrate an in vitro assessment of BT2 on C2C12 myoblasts proliferation and differentiation. The data suggest that activation of BCAAs catabolism by the BCKDK inhibitor BT2 impairs C2C12 myoblasts proliferation and differentiation.
Project description:SUMOylation is one of the post-translational modifications that involves the covalent attachment of the small ubiquitin-like modifier (SUMO) to the substrate. SUMOylation regulates multiple biological processes, including myoblast proliferation, differentiation, and apoptosis. 2-D08 is a synthetically available flavone, which acts as a potent cell-permeable SUMOylation inhibitor. Its mechanism of action involves preventing the transfer of SUMO from the E2 thioester to the substrate without influencing SUMO-activating enzyme E1 (SAE-1/2) or E2 Ubc9-SUMO thioester formation. However, both the effects and mechanisms of 2-D08 on C2C12 myoblast cells remain unclear. In the present study, we found that treatment with 2-D08 inhibits C2C12 cell proliferation and differentiation. We confirmed that 2-D08 significantly hampers the viability of C2C12 cells. Additionally, it inhibited myogenic differentiation, decreasing myosin heavy chain (MHC), MyoD, and myogenin expression. Furthermore, we confirmed that 2-D08-mediated anti-myogenic effects impair myoblast differentiation and myotube formation, reducing the number of MHC-positive C2C12 cells. In addition, we found that 2-D08 induces the activation of ErK1/2 and the degradation of MyoD and myogenin in C2C12 cells. Taken together, these results indicated that 2-D08 treatment results in the deregulated proliferation and differentiation of myoblasts. However, further research is needed to investigate the long-term effects of 2-D08 on skeletal muscles.
Project description:Irisin is an exercise-induced myokine that has various physiological functions, such as roles in energy expenditure, glucose/lipid metabolism, and muscle development. In muscle development, myoblast proliferation is known to be a first step, and recent studies have reported that an increased irisin level is involved in the promotion of cell proliferation in various cell types, including myoblasts. However, the exact mechanism of action by which irisin promotes myoblast proliferation has not been reported. In this study, we aimed to determine the pro-proliferative effect of irisin on C2C12 myoblasts and its mechanism of action. Irisin induced C2C12 cell proliferation and upregulated the mRNA levels of markers of proliferation Pcna, Mki67, and Mcm2. Irisin increased extracellular signal-regulated kinase (ERK) phosphorylation, and U0126, an ERK pathway inhibitor, suppressed irisin-induced C2C12 cell proliferation. Transcriptomic and qRT-PCR analysis showed that Ccl2, Ccl7, Ccl8, and C3 are potential downstream regulators of ERK signaling that promote C2C12 cell proliferation. Knockdown of Ccl7 revealed that irisin upregulates chemokine (C-C motif) ligand 7 (CCL7) and subsequently promotes C2C12 cell proliferation. These results suggest that irisin promotes C2C12 myoblast proliferation via ERK-dependent CCL7 upregulation and may aid in understanding how irisin contributes to muscle development.