Project description:GWASs for atopic dermatitis have identified 25 reproducible loci. We attempt to prioritize the candidate causal genes at these loci using extensive molecular resources compiled into a bioinformatics pipeline. We identified a list of 103 molecular resources for atopic dermatitis etiology, including expression, protein, and DNA methylation quantitative trait loci datasets in the skin or immune-relevant tissues, which were tested for overlap with GWAS signals. This was combined with functional annotation using regulatory variant prediction and features such as promoter‒enhancer interactions, expression studies, and variant fine mapping. For each gene at each locus, we condensed the evidence into a prioritization score. Across the investigated loci, we detected significant enrichment of genes with adaptive immune regulatory function and epidermal barrier formation among the top-prioritized genes. At eight loci, we were able to prioritize a single candidate gene (IL6R, ADO, PRR5L, IL7R, ETS1, INPP5D, MDM1, TRAF3). In addition, at 6 of the 25 loci, our analysis prioritizes less familiar candidates (SLC22A5, IL2RA, MDM1, DEXI, ADO, STMN3). Our analysis provides support for previously implicated genes at several atopic dermatitis GWAS loci as well as evidence for plausible additional candidates at others, which may represent potential targets for drug discovery.
Project description:ObjectiveOxidative stress is strongly associated with atopic dermatitis (AD), and increased antioxidant intake could potentially reduce the risk of or alleviate its symptoms. However, the argument is disputed. Therefore, we conducted a Mendelian randomization (MR) analysis to explore the causal relationship between dietary antioxidant vitamin intake and AD.MethodsWe applied MR analysis to examine the causative association between dietary antioxidant vitamin intake (vitamin C, vitamin E, carotene, and retinol) and AD. The genome-wide association study (GWAS) summary data for antioxidant vitamins intake and AD were obtained from the IEU OpenGWAS database and the UK biobank. Our study consisted of two major parts, MR analysis to detect the causal relationship between exposure and outcome, and sensitivity analysis as supplemental evidence to verify the robustness of the results.ResultThe results revealed a suggestive causal relationship between vitamin E intake and AD (p = 0.038, OR 95% CI = 0.745-0.992). However, there was no causal relationship between the other three vitamins (vitamin C, carotene, and retinol) and AD (p = 0.507, OR 95% CI = 0.826-1.099) (p = 0.890, OR 95% CI = 0.864-1.184) (p = 0.492, OR 95% CI = 0.893-1.264). None of the single nucleotide polymorphisms (SNPs) were detected as heterogeneous and pleiotropy in the sensitivity analysis (p > 0.05).ConclusionThe analysis suggested that dietary intake of vitamin E may potentially lower the risk of AD. Conversely, intake of vitamin C, retinol, and carotene is not causally related to AD. Although vitamin E intake could be protective against AD, intake of dietary antioxidant vitamins to prevent or treat AD is not necessary.
Project description:Atopic dermatitis (AD) is classified as extrinsic and intrinsic, representing approximately 80% and 20% of patients with the disease, respectively. Although sharing a similar clinical phenotype, only extrinsic AD is characterized by high serum IgE levels. Because most patients with AD exhibit high IgE levels, an "allergic"/IgE-mediated disease pathogenesis was hypothesized. However, current models associate AD with T-cell activation, particularly TH2/TH22 polarization, and epidermal barrier defects.We sought to define whether both variants share a common pathogenesis.We stratified 51 patients with severe AD into extrinsic AD (n = 42) and intrinsic AD (n = 9) groups (with similar mean disease activity/SCORAD scores) and analyzed the molecular and cellular skin pathology of lesional and nonlesional intrinsic AD and extrinsic AD by using gene expression (real-time PCR) and immunohistochemistry.A significant correlation between IgE levels and SCORAD scores (r = 0.76, P < 10(-5)) was found only in patients with extrinsic AD. Marked infiltrates of T cells and dendritic cells and corresponding epidermal alterations (keratin 16, Mki67, and S100A7/A8/A9) defined lesional skin of patients with both variants. However, higher activation of all inflammatory axes (including TH2) was detected in patients with intrinsic AD, particularly TH17 and TH22 cytokines. Positive correlations between TH17-related molecules and SCORAD scores were only found in patients with intrinsic AD, whereas only patients with extrinsic AD showed positive correlations between SCORAD scores and TH2 cytokine (IL-4 and IL-5) levels and negative correlations with differentiation products (loricrin and periplakin).Although differences in TH17 and TH22 activation exist between patients with intrinsic AD and those with extrinsic AD, we identified common disease-defining features of T-cell activation, production of polarized cytokines, and keratinocyte responses to immune products. Our data indicate that a TH2 bias is not the sole cause of high IgE levels in patients with extrinsic AD, with important implications for similar therapeutic interventions.
Project description:Vitamin D features immunomodulatory effects on both the innate and adaptive immune systems, which may explain the growing evidence connecting vitamin D to allergic diseases. A wealth of studies describing a beneficial effect of vitamin D on atopic dermatitis (AD) prevalence and severity are known. However, observations linking high vitamin D levels to an increased risk of developing AD have also been published, effectively creating a controversy. In this paper, we review the existing literature on the association between AD and vitamin D levels, focusing on childhood. As of today, the role of vitamin D in AD is far from clear; additional studies are particularly needed in order to confirm the promising therapeutic role of vitamin D supplementation in childhood AD.
Project description:BackgroundLow circulating vitamin D levels have been associated with risk of asthma, atopic dermatitis, and elevated total immunoglobulin E (IgE). These epidemiological associations, if true, would have public health importance, since vitamin D insufficiency is common and correctable.Methods and findingsWe aimed to test whether genetically lowered vitamin D levels were associated with risk of asthma, atopic dermatitis, or elevated serum IgE levels, using Mendelian randomization (MR) methodology to control bias owing to confounding and reverse causation. The study employed data from the UK Biobank resource and from the SUNLIGHT, GABRIEL and EAGLE eczema consortia. Using four single-nucleotide polymorphisms (SNPs) strongly associated with 25-hydroxyvitamin D (25OHD) levels in 33,996 individuals, we conducted MR studies to estimate the effect of lowered 25OHD on the risk of asthma (n = 146,761), childhood onset asthma (n = 15,008), atopic dermatitis (n = 40,835), and elevated IgE level (n = 12,853) and tested MR assumptions in sensitivity analyses. None of the four 25OHD-lowering alleles were associated with asthma, atopic dermatitis, or elevated IgE levels (p ≥ 0.2). The MR odds ratio per standard deviation decrease in log-transformed 25OHD was 1.03 (95% confidence interval [CI] 0.90-1.19, p = 0.63) for asthma, 0.95 (95% CI 0.69-1.31, p = 0.76) for childhood-onset asthma, and 1.12 (95% CI 0.92-1.37, p = 0.27) for atopic dermatitis, and the effect size on log-transformed IgE levels was -0.40 (95% CI -1.65 to 0.85, p = 0.54). These results persisted in sensitivity analyses assessing population stratification and pleiotropy and vitamin D synthesis and metabolism pathways. The main limitations of this study are that the findings do not exclude an association between the studied outcomes and 1,25-dihydoxyvitamin D, the active form of vitamin D, the study was underpowered to detect effects smaller than an OR of 1.33 for childhood asthma, and the analyses were restricted to white populations of European ancestry. This research has been conducted using the UK Biobank Resource and data from the SUNLIGHT, GABRIEL and EAGLE Eczema consortia.ConclusionsIn this study, we found no evidence that genetically determined reduction in 25OHD levels conferred an increased risk of asthma, atopic dermatitis, or elevated total serum IgE, suggesting that efforts to increase vitamin D are unlikely to reduce risks of atopic disease.
Project description:Population studies suggest that atopic dermatitis (AD) is associated with an increased risk of obesity, however a causal relationship between these two conditions remains to be established. We therefore use Mendelian randomization (MR) to evaluate whether obesity and AD are causally interlinked. We used summary statistics extracted from genome wide association studies of Body Mass Index (BMI) and AD. MR analysis was performed in both directions to establish the direction of causality between BMI and AD. We find that genetically determined increase in adiposity is associated with increased risk of AD (odds ratio of AD 1.08 [95% CI 1.01 to 1.14; p?=?0.015] per unit increase in BMI). Conversely, genetically determined increased risk of AD is not associated with a higher BMI (change in BMI attributable to AD based on genetic information: 0.00; 95% CI?-?0.02 to 0.02; p?=?0.862). There was no evidence for confounding of these genetic analyses by horizontal pleiotropy. Our results indicate that the association of AD with obesity is likely to reflect a causal role for adiposity in the development of AD. Our findings enhance understanding of the etiology of AD, and the basis for experimental studies to evaluate the mechanistic pathways by which adiposity promotes AD.
Project description:BackgroundSome evidence suggests abnormalities in fatty acids in patients with atopic dermatitis (AD), and benefits of supplementation with these fatty acids have been reported. However, there is still substantial controversy on the correlation between fatty acids and AD. Therefore, the aim of this study was to determine whether fatty acid levels are causally related to AD using a Mendelian randomization approach.MethodsWe evaluated the data about the fatty acids levels and AD with various methods from Genome-Wide Association Study (GWAS). GWAS results were available both from European ancestry. Mendelian randomization methods were used to analysis the casual inference of fatty acids on AD. MR Egger and MR-PRESSO were used to determine pleiotropy and heterogeneity. Further analysis was conducted using instruments associated with the FADS genes to address mechanisms involved. We also used Multivariate MR (MVMR) to show the independent casual inference of omega-3 (n-3) fatty acids on AD.ResultsMendelian randomization (MR) analysis suggests that n-3 fatty acid levels are associated with a lower risk of AD (n-3 ORIVW: 0.92, 95% confidence interval [CI]: 0.87-0.98; p = 0.01). Moreover, docosahexaenoic acids (DHA) levels, which is a kind of long-chain, highly unsaturated omega-3 (n-3) fatty acid, and its higher level was associated with a lower risk of AD (DHA ORIVW: 0.91, 95% CI: 0.84-0.98; p = 0.02). We ran multivariable MR analysis while controlling for variables within the other types of fatty acids. The effect estimates agreed with the preliminary MR analysis indicating the effect of n-3 fatty acids levels on AD was robust. MR-egger suggest no significant pleiotropy and heterogeneity on genetic instrumental variants. Outliers-corrected MR analyses after controlling horizontal pleiotropy were still robust. The single-SNP analyses revealed that n-3 fatty acids are likely linked to a decreased risk of AD through FADS cluster, highlighting the significance of the FADS gene in the fatty acids synthesis pathway in the development of AD.ConclusionOur studies suggest that n-3 fatty acids may reduce the risk of AD. Risk prediction tools based on n-3 fatty acid levels may be valuable methods for improving AD screening and primary prevention. To reduce the risk of AD, individuals could enhance n-3 fatty acids intake through supplement or diet.
Project description:Atopic dermatitis is a prevalent, inflammatory skin disease that presents with an eczematous, itchy rash. As of late, there have been many emerging monoclonal antibody inhibitor and small molecule therapies that have changed the course of eczema treatment. One of the treatments in the pipeline for atopic dermatitis is interleukin 13 monoclonal antibody inhibitor, lebrikizumab. As interleukin 13 has been identified as a pro-inflammatory cytokine in the immunological cascade of eczema, it is thought that lebrikizumab can be a great treatment choice for patients with atopic dermatitis. Lebrikizumab is currently being investigated in several studies. Thus far, lebrikizumab for the treatment of eczema has been found to be efficacious; in particular, a rapid response of pruritus improvement has been demonstrated in as early as 2 days. Additionally, it is well tolerated and has an acceptable safety profile, with reports suggesting that are decreased risks of infection when compared to dupilumab. In this review, we aim to summarize the current understanding of lebrikizumab in terms of the mechanism of action, preclinical pharmacology, pharmacokinetics and metabolism, efficacy and safety, and drug indications.
Project description:BackgroundAtopic dermatitis is one of the most common skin disorders. Evidence has suggested an association between skin disorders, such as atopic dermatitis, and Parkinson's disease (PD). However, whether atopic dermatitis has a causal effect on PD remains unknown.MethodsThe study aimed to determine whether their association between atopic dermatitis and PD is causal, using a bidirectional two-sample Mendelian randomization method. Genetic variants from the public genome-wide association studies for atopic dermatitis (n = 10788 cases and 30047 controls) were selected to evaluate their causal effects on the risk of PD (33,674 cases and 449,056 controls). The inverse variance weighted (IVW) method was used as the primary analysis.ResultsThe IVW results indicated that atopic dermatitis was associated with decreased risk of PD {fixed effects: odds ratio [OR] [95% confidence interval (CI)]: .905 [.832-.986], p = .022; OR [95% CI]: .905 [.827-.991], p = .032}. However, we failed to detect the causal effects of PD on risk of atopic dermatitis in the reverse causation analysis.ConclusionThis study indicated causal association of genetically proxied atopic dermatitis with the risk of PD. Future studies are warranted to explore the underlying mechanism and investigate the targeting effect of atopic dermatitis on PD.