Unknown

Dataset Information

0

In vitro anti-bacterial activity and network pharmacology analysis of Sanguisorba officinalis L. against Helicobacter pylori infection.


ABSTRACT:

Background

Helicobacter pylori (H. pylori) infection has become an international public health problem, and antibiotic-based triple or quadruple therapy is currently the mainstay of treatment. However, the effectiveness of these therapies decreases due to resistance to multiple commonly used antibiotics. Sanguisorba officinalis L. (S. officinalis), a traditional Chinese medicine clinically used for hemostasis and treatment of diarrhea, has various pharmacological activities. In this study, in vitro antimicrobial activity was used for the preliminary evaluation of S. officinalis against H. pylori. And a pharmacology analysis approach was also utilized to elucidate its underlying mechanisms against H. pylori infection.

Methods

Micro-broth dilution method, agar dilution method, checkerboard assay, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used for the assessment of anti-bacterial activity. Active ingredients screening, GO analysis, KEGG analysis, construction of PPI network, molecular docking, and RT-qPCR were used to elucidate the underlying pharmacological mechanisms of S. officinalis against H. pylori infection.

Results

The minimum inhibitory concentration (MIC) values of S. officinalis against multiple H. pylori strains including clinically isolated multi-drug resistant (MDR) strains were ranging from 160 to 320 µg/ml. These results showed that S. officinalis had additive interaction with four commonly used antibiotics and could exert antibacterial effect by changing the morphology of bacteria without developing drug resistance. Through network pharmacology analysis, 8 active ingredients in S. officinalis were screened out for subsequent studies. Among 222 putative targets of S. officinalis, 49 targets were identified as potential targets for treatment of H. pylori infection. And these 49 targets were significantly enriched in GO processes such as protein kinase B signaling, protein kinase activity, protein kinase binding, and KEGG pathways such as Pathways in cancer, MicroRNAs in cancer, and TNF signaling pathway. Protein-protein interaction analysis yielded 5 core targets (AKT1, VEGFA, EGFR, SRC, CCND1), which were validated by molecular docking and RT-qPCR.

Conclusions

Overall, this study confirmed the in vitro inhibitory activity of S. officinalis against H. pylori and explored the possible pharmacological mechanisms, laying the foundation for further research and clinical application.

SUBMITTER: Shen X 

PROVIDER: S-EPMC8052767 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3723868 | biostudies-literature
| S-EPMC9133337 | biostudies-literature
| S-EPMC7969657 | biostudies-literature
2005-10-20 | GSE3479 | GEO
| S-EPMC6720167 | biostudies-literature
2005-10-20 | E-GEOD-3479 | biostudies-arrayexpress
| S-EPMC8746548 | biostudies-literature
| S-EPMC11008818 | biostudies-literature
| S-EPMC7765062 | biostudies-literature
| S-EPMC6709534 | biostudies-literature