Project description:ObjectiveWe describe the neurologic, neuroradiologic, and ophthalmologic phenotype of 1 Swedish and 1 Finnish family with autosomal dominant ataxia-pancytopenia (ATXPC) syndrome and SAMD9L mutations.MethodsMembers of these families with germline SAMD9L c.2956C>T, p.Arg986Cys, or c.2672T>C, p.Ile891Thr mutations underwent structured interviews and neurologic and ophthalmologic examinations. Neuroimaging was performed, and medical records were reviewed. Previous publications on SAMD9L-ATXPC were reviewed.ResultsTwelve individuals in both families were affected clinically. All mutation carriers examined had balance impairment, although severity was very variable. All but 1 had nystagmus, and all but 1 had pyramidal tract signs. Neurologic features were generally present from childhood on and progressed slowly. Two adult patients, who experienced increasing clumsiness, glare, and difficulties with gaze fixation, had paracentral retinal dysfunction verified by multifocal electroretinography. Brain MRI showed early, marked cerebellar atrophy in most carriers and variable cerebral periventricular white matter T2 hyperintensities. Two children were treated with hematopoietic stem cell transplantation for hematologic malignancies, and the neurologic symptoms of one of these worsened after treatment. Three affected individuals had attention deficit hyperactivity disorder or cognitive problems. Retinal dysfunction was not previously reported in individuals with ATXPC.ConclusionsThe neurologic phenotype of this syndrome is defined by balance or gait impairment, nystagmus, hyperreflexia in the lower limbs and, frequently, marked cerebellar atrophy. Paracentral retinal dysfunction may contribute to glare, reading problems, and clumsiness. Timely diagnosis of ATXPC is important to address the risk for severe hemorrhage, infection, and hematologic malignancies inherent in this syndrome; regular hematologic follow-up might be beneficial.
Project description:Ataxia-pancytopenia (AP) syndrome is characterized by cerebellar ataxia, variable hematologic cytopenias, and predisposition to marrow failure and myeloid leukemia, sometimes associated with monosomy 7. Here, in the four-generation family UW-AP, linkage analysis revealed four regions that provided the maximal LOD scores possible, one of which was in a commonly microdeleted chromosome 7q region. Exome sequencing identified a missense mutation (c.2640C>A, p.His880Gln) in the sterile alpha motif domain containing 9-like gene (SAMD9L) that completely cosegregated with disease. By targeted sequencing of SAMD9L, we subsequently identified a different missense mutation (c.3587G>C, p.Cys1196Ser) in affected members of the first described family with AP syndrome, Li-AP. Neither variant is reported in the public databases, both affect highly conserved amino acid residues, and both are predicted to be damaging. With time in culture, lymphoblastic cell lines (LCLs) from two affected individuals in family UW-AP exhibited copy-neutral loss of heterozygosity for large portions of the long arm of chromosome 7, resulting in retention of only the wild-type SAMD9L allele. Newly established LCLs from both individuals demonstrated the same phenomenon. In addition, targeted capture and sequencing of SAMD9L in uncultured blood DNA from both individuals showed bias toward the wild-type allele. These observations indicate in vivo hematopoietic mosaicism. The hematopoietic cytopenias that characterize AP syndrome and the selective advantage for clones that have lost the mutant allele support the postulated role of SAMD9L in the regulation of cell proliferation. Furthermore, we show that AP syndrome is distinct from the dyskeratoses congenita telomeropathies, with which it shares some clinical characteristics.
Project description:Sterile α motif domain-containing protein 9-like (SAMD9L) is encoded by a hallmark interferon-induced gene with a role in controlling virus replication that is not well understood. Here, we analyze SAMD9L function from the perspective of human mutations causing neonatal-onset severe autoinflammatory disease. Whole-genome sequencing of two children with leukocytoclastic panniculitis, basal ganglia calcifications, raised blood inflammatory markers, neutrophilia, anemia, thrombocytopaenia, and almost no B cells revealed heterozygous de novo SAMD9L mutations, p.Asn885Thrfs*6 and p.Lys878Serfs*13. These frameshift mutations truncate the SAMD9L protein within a domain a region of homology to the nucleotide-binding and oligomerization domain (NOD) of APAF1, ∼80 amino acids C-terminal to the Walker B motif. Single-cell analysis of human cells expressing green fluorescent protein (GFP)-SAMD9L fusion proteins revealed that enforced expression of wild-type SAMD9L repressed translation of red fluorescent protein messenger RNA and globally repressed endogenous protein translation, cell autonomously and in proportion to the level of GFP-SAMD9L in each cell. The children's truncating mutations dramatically exaggerated translational repression even at low levels of GFP-SAMD9L per cell, as did a missense Arg986Cys mutation reported recurrently as causing ataxia pancytopenia syndrome. Autoinflammatory disease associated with SAMD9L truncating mutations appears to result from an interferon-induced translational repressor whose activity goes unchecked by the loss of C-terminal domains that may normally sense virus infection.
Project description:Germline mutations in the SAMD9 and SAMD9L genes, located in tandem on chromosome 7, are associated with a clinical spectrum of disorders including the MIRAGE syndrome, ataxia-pancytopenia syndrome and myelodysplasia and leukemia syndrome with monosomy 7 syndrome. Germline gain-of-function mutations increase SAMD9 or SAMD9L's normal antiproliferative effect. This causes pancytopenia and generally restricted growth and/or specific organ hypoplasia in non-hematopoietic tissues. In blood cells, additional somatic aberrations that reverse the germline mutation's effect, and give rise to the clonal expansion of cells with reduced or no antiproliferative effect of SAMD9 or SAMD9L include complete or partial chromosome 7 loss or loss-of-function mutations in SAMD9 or SAMD9L. Furthermore, the complete or partial loss of chromosome 7q may cause myelodysplastic syndrome in these patients. SAMD9 mutations appear to associate with a more severe disease phenotype, including intrauterine growth restriction, developmental delay and hypoplasia of adrenal glands, testes, ovaries or thymus, and most reported patients died in infancy or early childhood due to infections, anemia and/or hemorrhages. SAMD9L mutations have been reported in a few families with balance problems and nystagmus due to cerebellar atrophy, and may lead to similar hematological disease as seen in SAMD9 mutation carriers, from early childhood to adult years. We review the clinical features of these syndromes, discuss the underlying biology, and interpret the genetic findings in some of the affected family members. We provide expert-based recommendations regarding diagnosis, follow-up, and treatment of mutation carriers.
Project description:Episodic ataxia type 1 (EA1), a Shaker-like K+channelopathy, is a consequence of genetic anomalies in the KCNA1 gene that lead to dysfunctions in the voltage-gated K+ channel Kv1. 1. Generally, KCNA1 mutations are inherited in an autosomal dominant manner. Here we report the clinical phenotype of an EA1 patient characterized by ataxia attacks that decrease in frequency with age, and eventually leading to therapy discontinuation. A new de novo mutation (c.932G>A) that changed a highly conserved glycine residue into an aspartate (p.G311D) was identified by using targeted next-generation sequencing. The conserved glycine is located in the S4-S5 linker, a crucial domain controlling Kv1.1 channel gating. In silico analyses predicted the mutation deleterious. Heterologous expression of the mutant (Kv1.1-G311D) channels resulted in remarkably decreased amplitudes of measured current, confirming the identified variant is pathogenic. Collectively, these findings corroborate the notion that EA1 also results from de novo variants and point out that regardless of the mutation-induced deleterious loss of Kv1.1 channel function the ataxia phenotype may improve spontaneously.
Project description:BackgroundCornelia de Lange syndrome (CdLS) is a rare and clinically variable syndrome characterized by growth impairment, multi-organ anomalies, and a typical set of facial dysmorphisms. Here we describe a 2-year-old female child harboring a novel de novo missense variant in HDAC8, whose phenotypical score, according to the recent consensus on CdLS clinical diagnostic criteria, allowed the diagnosis of a non-classic CdLS.MethodsClinical exome sequencing was performed on the trio, identifying a de novo heterozygous variant in HDAC8 (NM_018486; c. 356C>G p.Thr119Arg). Molecular modeling was performed to evaluate putative functional consequence of the HDAC8 protein.ResultsThe variant HDAC8 c.356C>G is classified as pathogenic following the ACMG (American College of Medical Genetics and Genomics)/AMP (Association for Molecular Pathology) guidelines. By molecular modeling, we confirmed the deleterious effect of this variant, since the amino acid change compromises the conformational flexibility of the HDAC8 loop required for optimal catalytic function.ConclusionWe described a novel Thr119Arg mutation in HDAC8 in a patient displaying the major phenotypic traits of the CdLS. Our results suggest that a modest change outside an active site is capable of triggering global structural changes that propagate through the protein scaffold to the catalytic site, creating de facto haploinsufficiency.
Project description:Spinocerebellar ataxias consist of a highly heterogeneous group of inherited movement disorders clinically characterized by progressive cerebellar ataxia variably associated with additional distinctive clinical signs. The genetic heterogeneity is evidenced by the myriad of associated genes and underlying genetic defects identified. In this study, we describe a new spinocerebellar ataxia subtype in nine members of a Spanish five-generation family from Menorca with affected individuals variably presenting with ataxia, nystagmus, dysarthria, polyneuropathy, pyramidal signs, cerebellar atrophy and distinctive cerebral demyelination. Affected individuals presented with horizontal and vertical gaze-evoked nystagmus and hyperreflexia as initial clinical signs, and a variable age of onset ranging from 12 to 60 years. Neurophysiological studies showed moderate axonal sensory polyneuropathy with altered sympathetic skin response predominantly in the lower limbs. We identified the c.1877C > T (p.Ser626Leu) pathogenic variant within the SAMD9L gene as the disease causative genetic defect with a significant log-odds score (Z max = 3.43; θ = 0.00; P < 3.53 × 10-5). We demonstrate the mitochondrial location of human SAMD9L protein, and its decreased levels in patients' fibroblasts in addition to mitochondrial perturbations. Furthermore, mutant SAMD9L in zebrafish impaired mobility and vestibular/sensory functions. This study describes a novel spinocerebellar ataxia subtype caused by SAMD9L mutation, SCA49, which triggers mitochondrial alterations pointing to a role of SAMD9L in neurological motor and sensory functions.
Project description:Pfeiffer syndrome (PS) is an autosomal dominant disorder with three subtypes stemming from heterozygous mutations in the fibroblast growth factors FGFR1 and FGFR2. The subtypes overlap with heterogeneous clinical manifestations and variable prognosis dependent on neurological and respiratory compromise that impact short- and long-term outcomes and survival. We present a male, term infant with type II PS that was diagnostically suspected antenatally based on three-dimensional ultrasonographic findings that were confirmed postnatally by craniofacial tomography and magnetic resonance imaging. A new generation sequencing panel identified a unique de novo FGFR2, c.335 A > G p. Tyr112Cys variant, the first of its kind, and features that closely aligned with subtype II PS. Initial molecular results categorized the mutation as nonpathogenic, but it was later reclassified as pathogenic. Antenatal, multidisciplinary parental counseling about the tentative diagnosis and prognosis facilitated postnatal decisions that culminated in an informed choice for palliative care and early demise.
Project description:ObjectiveGlobal developmental delay has markedly high phenotypic and genetic heterogeneity, and is a great challenge for clinical diagnosis. Hypotonia, ataxia, and delayed development syndrome (HADDS), first reported in 2017, is one type of global development delay. The aim of the present study was to investigate the genetic etiology of a Chinese boy with global developmental delay.MethodsWe combined clinical and imaging phenotyping with trio whole-exome sequencing and Sanger sequencing to the patient and his clinically unaffected parents. A luciferase reporter and immunofluorescence were performed to detect the effect of mutation on transcriptional activity and subcellular localization.ResultsThe patient presented with several previously unreported symptoms in the patients with HADDS, including hemangiomas, mild hearing abnormalities and tracheomalacia. A novel EBF3 c.589A > G missense mutation (p.Asn197Asp, p.N197D) was identified in the patient but not in his parents. By constructing the plasmid and transfecting HEK293T cells, EBF3-N197D mutant showed impaired activation of luciferase reporter expression of the p21 promoter, and the mutant affected its entry into the nucleus.ConclusionTo the best of our knowledge, this is the first report of EBF3 pathogenic mutation which associated with HADDS in the Chinese population. Our results expand the phenotypes and pathogenic mutation spectrum of HADDS, thus potentially facilitating the clinical diagnosis and genetic counseling of HADDS patients.