Project description:Wildlife-vehicle collisions threaten both humans and wildlife, but we still lack information about the relationship between traffic volume and wildlife-vehicle collisions. The COVID-19 pandemic allowed us to investigate the effects of traffic volume on wildlife-vehicle collisions in the United States. We observed decreased traffic nationwide, particularly in densely populated states with low or high disease burdens. Despite reduced traffic, total collisions were unchanged; wildlife-vehicle collisions did decline at the start of the pandemic, but increased as the pandemic progressed, ultimately exceeding collisions in the previous year. As a result, nationwide collision rates were higher during the pandemic. We suggest that increased wildlife road use offsets the effects of decreased traffic volume on wildlife-vehicle collisions. Thus, decreased traffic volume will not always reduce wildlife-vehicle collisions.
Project description:Digital health technologies offer significant opportunities to reshape current health care systems. From the adoption of electronic medical records to mobile health apps and other disruptive technologies, digital health solutions have promised a better quality of care at a more sustainable cost. However, the widescale adoption of these solutions is lagging behind. The most adverse scenarios often provide an opportunity to develop and test the capacity of digital health technologies to increase the efficiency of health care systems. Catalonia (Northeast Spain) is one of the most advanced regions in terms of digital health adoption across Europe. The region has a long tradition of health information exchange in the public health care sector and is currently implementing an ambitious digital health strategy. In this viewpoint, we discuss the crucial role digital health solutions play during the coronavirus disease (COVID-19) pandemic to support public health policies. We also report on the strategies currently deployed at scale during the outbreak in Catalonia.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new coronavirus responsible for the pandemic named coronavirus disease 2019 (COVID-19). The disease causes SARS with a significant morbidity and mortality. We provide a review with a focus on COVID-19 in dermatology. We discuss triage of suspected infectious patients, protection of medical doctors and nurses. We discuss the available data on cutaneous symptoms, although disease-specific symptoms have yet not been observed. COVID-19 is a challenge for the treatment of dermatologic patients, either with severe inflammatory disorders or with skin cancer. The consequences for systemic treatment are obvious but it will be most important to collect the clinical data for a better decision process. Last but not least, education in dermatology for students will not be temporarily possible in the classical settings. COVID-19, although not a skin disease, by itself has an immense impact on dermatology.
Project description:Coronavirus Diseases 2019 (COVID-19) pandemic has a huge impact on the plastic waste management in many countries due to the sudden surge of medical waste which has led to a global waste management crisis. Improper management of plastic waste may lead to various negative impacts on the environment, animals, and human health. However, adopting proper waste management and the right technologies, looking in a different perception of the current crisis would be an opportunity. About 40% of the plastic waste ended up in landfill, 25% incinerated, 16% recycled and the remaining 19% are leaked into the environment. The increase of plastic wastes and demand of plastic markets serve as a good economic indicator for investor and government initiative to invest in technologies that converts plastic waste into value-added product such as fuel and construction materials. This will close the loop of the life cycle of plastic waste by achieving a sustainable circular economy. This review paper will provide insight of the state of plastic waste before and during the COVID-19 pandemic. The treatment pathway of plastic waste such as sterilisation technology, incineration, and alternative technologies available in converting plastic waste into value-added product were reviewed.
Project description:To understand and analyse the global impact of COVID-19 on outpatient services, inpatient care, elective surgery, and perioperative colorectal cancer care, a DElayed COloRectal cancer surgery (DECOR-19) survey was conducted in collaboration with numerous international colorectal societies with the objective of obtaining several learning points from the impact of the COVID-19 outbreak on our colorectal cancer patients which will assist us in the ongoing management of our colorectal cancer patients and to provide us safe oncological pathways for future outbreaks.
Project description:This paper examines the effects of the COVID-19 pandemic on environmental protection and legislation in Brazil. We evaluate major legislative actions, environmental fines and deforestation since January 2019. We show that 57 legislative acts aimed at weakening environmental protection in Brazil during the current administration, almost half of which in the seven-month period of the pandemic in Brazil, with September 2020 as the month with the most legislative acts (n = 16). These acts either deregulated or weakened current environmental legislation, with a number of them aimed at dismantling the main federal institutions in charge of environmental protection. We also found a 72% reduction in environmental fines during the pandemic, despite an increase in Amazonian deforestation during this period. We conclude that the current administration is taking advantage of the COVID-19 pandemic to intensify a pattern of weakening environmental protection in Brazil. This has the potential to intensify ongoing loss of biodiversity, greenhouse gas emissions, and the likelihood of other zoonotic disease outbreaks, and inflict substantial harm to traditional and indigenous peoples. We highlight the key role of the scientific community, media and civil society, national and international levels, in order to reverse these harmful actions.
Project description:The technology-driven world of the 21st century is currently confronted with a major threat to humankind, represented by the coronavirus disease (COVID-19) pandemic, caused by the severe acute respiratory syndrome, coronavirus-2 (SARS-CoV-2). As of now, COVID-19 has affected more than 6 million confirmed cases and took 0.39 million human lives. SARS-CoV-2 spreads much faster than its two ancestors, SARS-CoV and Middle East respiratory syndrome-CoV (MERS-CoV), but has low fatality rates. Our analyses speculate that the efficient replication and transmission of SARS-CoV-2 might be due to the high-density basic amino acid residues, preferably positioned in close proximity at both the furin-like cleavage sites (S1/S2 and S2') within the spike protein. Given the high genomic similarities of SARS-CoV-2 to bat SARS-like CoVs, it is likely that bats serve as a reservoir host for its progenitor. Women and children are less susceptible to SARS-CoV-2 infection, while the elderly and people with comorbidities are more prone to serious clinical outcomes, which may be associated with acute respiratory distress syndrome (ARDS) and cytokine storm. The cohesive approach amongst researchers across the globe has delivered high-end viral diagnostics. However, home-based point-of-care diagnostics are still under development, which may prove transformative in current COVID-19 pandemic containment. Similarly, vaccines and therapeutics against COVID-19 are currently in the pipeline for clinical trials. In this review, we discuss the noteworthy advancements, focusing on the etiological viral agent, comparative genomic analysis, population susceptibility, disease epidemiology and diagnosis, animal reservoirs, laboratory animal models, disease transmission, therapeutics, vaccine challenges, and disease mitigation measures.
Project description:The coronavirus disease (COVID-19) is caused by a positive-stranded RNA virus called severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), belonging to the Coronaviridae family. This virus originated in Wuhan City, China, and became the cause of a multiwave pandemic that has killed 3.46 million people worldwide as of May 22, 2021. The havoc intensified with the emergence of SARS-CoV-2 variants (B.1.1.7; Alpha, B.1.351; Beta, P.1; Gamma, B.1.617; Delta, B.1.617.2; Delta-plus, B.1.525; Eta, and B.1.429; Epsilon etc.) due to mutations generated during replication. More variants may emerge to cause additional pandemic waves. The most promising approach for combating viruses and their emerging variants lies in prophylactic vaccines. Several vaccine candidates are being developed using various platforms, including nucleic acids, live attenuated virus, inactivated virus, viral vectors, and protein-based subunit vaccines. In this unprecedented time, 12 vaccines against SARS-CoV-2 have been phased in following WHO approval, 184 are in the preclinical stage, and 100 are in the clinical development process. Many of them are directed to elicit neutralizing antibodies against the viral spike protein (S) to inhibit viral entry through the ACE-2 receptor of host cells. Inactivated vaccines, to the contrary, provide a wide range of viral antigens for immune activation. Being an intracellular pathogen, the cytotoxic CD8+ T Cell (CTL) response remains crucial for all viruses, including SARS-CoV-2, and needs to be explored in detail. In this review, we try to describe and compare approved vaccines against SARS-CoV-2 that are currently being distributed either after phase III clinical trials or for emergency use. We discuss immune responses induced by various candidate vaccine formulations; their benefits, potential limitations, and effectiveness against variants; future challenges, such as antibody-dependent enhancement (ADE); and vaccine safety issues and their possible resolutions. Most of the current vaccines developed against SARS-CoV-2 are showing either promising or compromised efficacy against new variants. Multiple antigen-based vaccines (multivariant vaccines) should be developed on different platforms to tackle future variants. Alternatively, recombinant BCG, containing SARS-CoV-2 multiple antigens, as a live attenuated vaccine should be explored for long-term protection. Irrespective of their efficacy, all vaccines are efficient in providing protection from disease severity. We must insist on vaccine compliance for all age groups and work on vaccine hesitancy globally to achieve herd immunity and, eventually, to curb this pandemic.