Unknown

Dataset Information

0

Priming of myelin-specific T cells in the absence of dendritic cells results in accelerated development of Experimental Autoimmune Encephalomyelitis.


ABSTRACT: Experimental autoimmune encephalomyelitis (EAE) is an established animal model of multiple sclerosis (MS). Inflammatory CD4+ T cell responses directed against CNS antigens, including myelin proteolipid protein (PLP), are key mediators of EAE. Dendritic cells (DCs) are critical for the induction of T cell responses against infectious agents. However, the importance of DCs in priming self-reactive CD4+ T cells in autoimmune disease such as MS has been unclear. To determine the requirement of DCs in PLP-specific CD4+ T cell responses and EAE, we genetically deleted CD11c+ DCs in PLP T cell receptor (TCR) transgenic SJL mice constitutively. DC deficiency did not impair the development, selection or the pathogenic function of PLP-specific CD4+ T cells in these mice, and resulted in accelerated spontaneous EAE compared to DC sufficient controls. In addition, using a genetic approach to ablate DCs conditionally in SJL mice, we show that CD11c+ DCs were dispensable for presenting exogenous or endogenous myelin antigen to PLP-specific T cells and for promoting pro-inflammatory T cell responses and severe EAE. Our findings demonstrate that constitutive or conditional ablation of CD11c+ DCs diminished self-tolerance to PLP autoantigen. They further show that in the absence of DCs, non-DCs can efficiently present CNS myelin antigens such as PLP to self-reactive T cells, resulting in accelerated onset of spontaneous or induced EAE.

SUBMITTER: Luu T 

PROVIDER: S-EPMC8064509 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC2684193 | biostudies-literature
| S-EPMC5086895 | biostudies-other
| S-EPMC524444 | biostudies-literature
| S-EPMC2951396 | biostudies-literature
| S-EPMC2667209 | biostudies-literature
| S-EPMC6492777 | biostudies-literature
| S-EPMC5800700 | biostudies-literature
| S-EPMC3077096 | biostudies-other
2024-09-30 | GSE234291 | GEO
| S-EPMC6016871 | biostudies-other