Project description:Congestive heart failure remains a primary cause of cardiovascular-related events. Heart failure patients face two health care challenges. First, they are uncertain about their prognosis and second, they have an unpredictable clinical course with recurrent exacerbations of heart failure. The echocardiogram is an easily accessible bedside test without any associated procedural complications. Additionally, it provides a wealth of information about chamber size and function, valve integrity and the pericardial sac. In the present review, the most common echocardiographic predictors of impending cardiac events in congestive heart failure are described.
Project description:The upper interventricular septum may be prominent in elderly individuals, a finding referred to as discrete upper septal thickening (DUST). We examined the prevalence, clinical and echocardiographic correlates, and prognostic significance of DUST in a community-based sample. We evaluated Framingham Study participants who underwent routine echocardiography. In 3562 Framingham Study participants (mean age 58 years, 57% women), DUST was observed in 52 participants. The clinical correlates of DUST were increasing age (odds ratio [OR] per 10 year increment 2.59, 95% confidence intervals [CI] 1.64-4.08) and systolic blood pressure (OR per SD increment 1.55, 95% CI 1.15-2.09). DUST was positively associated with left ventricular (LV) fractional shortening and mitral annular calcification but inversely with LV diastolic dimensions (P < 0.02 for all). On follow-up (mean 15 years), 732 individuals died (33 with DUST) and 560 experienced a cardiovascular disease (CVD) event (18 with DUST). Adjusting for cardiovascular risk factors, DUST was not associated with CVD or mortality risk (P > 0.30 for both). The follow-up component of our study suggests that DUST is not independently associated with adverse prognosis.
Project description:Blood lipid levels including low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides (TG) are highly heritable. Genome-wide association is a promising approach to map genetic loci related to these heritable phenotypes.In 1087 Framingham Heart Study Offspring cohort participants (mean age 47 years, 52% women), we conducted genome-wide analyses (Affymetrix 100K GeneChip) for fasting blood lipid traits. Total cholesterol, HDL-C, and TG were measured by standard enzymatic methods and LDL-C was calculated using the Friedewald formula. The long-term averages of up to seven measurements of LDL-C, HDL-C, and TG over a approximately 30 year span were the primary phenotypes. We used generalized estimating equations (GEE), family-based association tests (FBAT) and variance components linkage to investigate the relationships between SNPs (on autosomes, with minor allele frequency > or =10%, genotypic call rate > or =80%, and Hardy-Weinberg equilibrium p > or = 0.001) and multivariable-adjusted residuals. We pursued a three-stage replication strategy of the GEE association results with 287 SNPs (P < 0.001 in Stage I) tested in Stage II (n approximately 1450 individuals) and 40 SNPs (P < 0.001 in joint analysis of Stages I and II) tested in Stage III (n approximately 6650 individuals).Long-term averages of LDL-C, HDL-C, and TG were highly heritable (h2 = 0.66, 0.69, 0.58, respectively; each P < 0.0001). Of 70,987 tests for each of the phenotypes, two SNPs had p < 10(-5) in GEE results for LDL-C, four for HDL-C, and one for TG. For each multivariable-adjusted phenotype, the number of SNPs with association p < 10(-4) ranged from 13 to 18 and with p < 10(-3), from 94 to 149. Some results confirmed previously reported associations with candidate genes including variation in the lipoprotein lipase gene (LPL) and HDL-C and TG (rs7007797; P = 0.0005 for HDL-C and 0.002 for TG). The full set of GEE, FBAT and linkage results are posted at the database of Genotype and Phenotype (dbGaP). After three stages of replication, there was no convincing statistical evidence for association (i.e., combined P < 10(-5) across all three stages) between any of the tested SNPs and lipid phenotypes.Using a 100K genome-wide scan, we have generated a set of putative associations for common sequence variants and lipid phenotypes. Validation of selected hypotheses in additional samples did not identify any new loci underlying variability in blood lipids. Lack of replication may be due to inadequate statistical power to detect modest quantitative trait locus effects (i.e., <1% of trait variance explained) or reduced genomic coverage of the 100K array. GWAS in FHS using a denser genome-wide genotyping platform and a better-powered replication strategy may identify novel loci underlying blood lipids.
Project description:This study investigates the relationship and genetic mechanisms of liver and heart diseases, focusing on the liver-heart axis (LHA) as a fundamental biological basis. Through genome-wide association study analysis, we explore shared genes and pathways related to LHA. Shared genetic factors are found in 8 out of 20 pairs, indicating genetic correlations. The analysis reveals 53 loci with pleiotropic effects, including 8 loci exhibiting shared causality across multiple traits. Based on SNP-p level tissue-specific multi-marker analysis of genomic annotation (MAGMA) analysis demonstrates significant enrichment of pleiotropy in liver and heart diseases within different cardiovascular tissues and female reproductive appendages. Gene-specific MAGMA analysis identifies 343 pleiotropic genes associated with various traits; these genes show tissue-specific enrichment primarily in the liver, cardiovascular system, and other tissues. Shared risk loci between immune cells and both liver and cardiovascular diseases are also discovered. Mendelian randomization analyses provide support for causal relationships among the investigated trait pairs.
Project description:BackgroundStudies on the longitudinal effects of intense physical training on cardiac remodeling are limited, especially in American collegiate football players.HypothesisCollege-level American football training will result in remodeling in a pattern consistent of a sport with moderate static and dynamic demands with increases in both wall and chamber sizes.MethodsWe studied 85 American collegiate football players who underwent transthoracic echocardiogram (TTE) for asymptomatic or mild COVID-19-related illness and compared the changes in echo dimensions to their preparticipation screening TTE. Pre- and posttraining variables were compared using a paired t-test for normally distributed variables.ResultsMean age was 19 years ± 1 and 61% of athletes were Black. Mean follow-up between TTEs was 21 ± 13 months. There was an increase in left atrial volume index (26.4 ± 5.5 to 32.8 ± 8.4 mL/m2 , p < .001), LV end diastolic diameter (5.13 ± 0.4 to 5.27 ± 0.4 cm, p = .003), basal RV diameter (3.28 ± 0.7 to 3.83 ± 0.5 cm, p = <.001), LV mass index (86.7 ± 15.3 to 90.1 ± 15.3, p = .015), and aortic root diameter (3.1 ± 0.4 to 3.2 ± 0.3 cm, p = .03) from pre- to posttraining, with a slightly greater magnitude in athletes with >2 years of training. Presence of left atrial enlargement (≥35 mL/m2 ) increased from 2.9% to 29% pre- to postparticipation in athletes with >2 years training. No significant changes in wall thickness, diastolic function, or right ventricular systolic function were observed.ConclusionAmerican football players college-level training was associated with increases in left and right ventricular chamber sizes, left atrial size, and aortic root diameter.
Project description:BackgroundAlthough obesity and cardiometabolic traits commonly overlap, underlying pathways remain incompletely defined. The association of metabolite profiles across multiple cardiometabolic traits may lend insights into the interaction of obesity and metabolic health. We sought to investigate metabolic signatures of obesity and related cardiometabolic traits in the community using broad-based metabolomic profiling.Methods and resultsWe evaluated the association of 217 assayed metabolites and cross-sectional as well as longitudinal changes in cardiometabolic traits among 2,383 Framingham Offspring cohort participants. Body mass index (BMI) was associated with 69 of 217 metabolites (P<0.00023 for all), including aromatic (tyrosine, phenylalanine) and branched chain amino acids (valine, isoleucine, leucine). Additional metabolic pathways associated with BMI included the citric acid cycle (isocitrate, alpha-ketoglutarate, aconitate), the tryptophan pathway (kynurenine, kynurenic acid), and the urea cycle. There was considerable overlap in metabolite profiles between BMI, abdominal adiposity, insulin resistance [IR] and dyslipidemia, modest overlap of metabolite profiles between BMI and hyperglycemia, and little overlap with fasting glucose or elevated blood pressure. Metabolite profiles were associated with longitudinal changes in fasting glucose, but the involved metabolites (ornithine, 5-HIAA, aminoadipic acid, isoleucine, cotinine) were distinct from those associated with baseline glucose or other traits. Obesity status appeared to "modify" the association of 9 metabolites with IR. For example, bile acid metabolites were strongly associated with IR among obese but not lean individuals, whereas isoleucine had a stronger association with IR in lean individuals.ConclusionsIn this large-scale metabolite profiling study, body mass index was associated with a broad range of metabolic alterations. Metabolite profiling highlighted considerable overlap with abdominal adiposity, insulin resistance, and dyslipidemia, but not with fasting glucose or blood pressure traits.
Project description:BackgroundWe hypothesize that cardiac magnetic resonance (CMR) native T1 is associated with myocardial deformation in thalassaemia patients. The present study aimed to compare CMR native T1 values to conventional T2* values in patients with beta-thalassaemia and to explore relationships between these CMR parameters of myocardial iron overload and left ventricular (LV) and left atrial (LA) myocardial deformation.MethodsThirty-four (16 males) patients aged 35.5 ± 9.2 years were studied. Myocardial T2* and T1 mapping were performed to assess the cardiac iron overload, while two-dimensional speckle-tracking echocardiography was performed in determine LV and LA myocardial deformation.ResultsT2* was 36.4 ± 8.7 ms with 3 patients having myocardial iron load (T2*<20 ms). The native T1 was 947.1 ± 84.8 ms, which was significantly lower than the reported normal values in the literature. There was a significant correlation between T1 and T2* values (r = 0.68, p < 0.001). There were no significant correlations between T1 and T2* values and conventional and tissue Doppler parameters of left ventricular systolic and diastolic function. On the other hand, T1, but not T2*, values were found to correlate negatively with maximum LA area indexed by body surface area (r = -0.34, p = 0.047) and positively with LA strain rate at atrial contraction (r = 0.36, p = 0.04). There were no associations between either of these CMR parameters with indices of ventricular deformation.ConclusionsIn patients with beta-thalassaemia major, native T1 values are decreased, associated with T2* values, and correlated with maximum LA area and LA strain rate at atrial contraction.
Project description:Mitochondria play an important role in both normal heart function and disease etiology. We report analysis of common genetic variations contributing to mitochondrial and heart functions using an integrative proteomics approach in a panel of inbred mouse strains called the Hybrid Mouse Diversity Panel (HMDP). We performed a whole heart proteome study in the HMDP (72 strains, n=2-3 mice) and retrieved 848 mitochondrial proteins (quantified in ≥50 strains). High-resolution association mapping on their relative abundance levels revealed three trans-acting genetic loci on chromosomes (chr) 7, 13 and 17 that regulate distinct classes of mitochondrial proteins as well as cardiac hypertrophy. DAVID enrichment analyses of genes regulated by each of the loci revealed that the chr13 locus was highly enriched for complex-I proteins (24 proteins, P=2.2E-61), the chr17 locus for mitochondrial ribonucleoprotein complex (17 proteins, P=3.1E-25) and the chr7 locus for ubiquinone biosynthesis (3 proteins, P=6.9E-05). Follow-up high resolution regional mapping identified NDUFS4, LRPPRC and COQ7 as the candidate genes for chr13, chr17 and chr7 loci, respectively, and both experimental and statistical analyses supported their causal roles. Furthermore, a large cohort of Diversity Outbred mice was used to corroborate Lrpprc gene as a driver of mitochondrial DNA (mtDNA)-encoded gene regulation, and to show that the chr17 locus is specific to heart. Variations in all three loci were associated with heart mass in at least one of two independent heart stress models, namely, isoproterenol-induced heart failure and diet-induced obesity. These findings suggest that common variations in certain mitochondrial proteins can act in trans to influence tissue-specific mitochondrial functions and contribute to heart hypertrophy, elucidating mechanisms that may underlie genetic susceptibility to heart failure in human populations.
Project description:Emerging large-scale biobanks pairing genotype data with phenotype data present new opportunities to prioritize shared genetic associations across multiple phenotypes for molecular validation. Past research, by our group and others, has shown gene-level tests of association produce biologically interpretable characterization of the genetic architecture of a given phenotype. Here, we present a new method, Ward clustering to identify Internal Node branch length outliers using Gene Scores (WINGS), for identifying shared genetic architecture among multiple phenotypes. The objective of WINGS is to identify groups of phenotypes, or "clusters," sharing a core set of genes enriched for mutations in cases. We validate WINGS using extensive simulation studies and then combine gene-level association tests with WINGS to identify shared genetic architecture among 81 case-control and seven quantitative phenotypes in 349,468 European-ancestry individuals from the UK Biobank. We identify eight prioritized phenotype clusters and recover multiple published gene-level associations within prioritized clusters.
Project description:The adult human myocardium is incapable of regeneration; yet, the zebrafish (Danio rerio) can regenerate damaged myocardium. Similar to the zebrafish heart, hearts of neonatal, but not adult mice are capable of myocardial regeneration. We performed a proteomics analysis of adult zebrafish hearts and compared their protein expression profile to hearts from neonatal and adult mice. Using difference in-gel electrophoresis (DIGE), there was little overlap between the proteome from adult mouse (>8weeks old) and adult zebrafish (18months old) hearts. Similarly, there was a significant degree of mismatch between the protein expression in neonatal and adult mouse hearts. Enrichment analysis of the selected proteins revealed over-expression of DNA synthesis-related proteins in the cardiac proteome of the adult zebrafish heart similar to neonatal and 4days old mice, whereas in hearts of adult mice there was a mitochondria-related predominance in protein expression. Importantly, we noted pronounced differences in the myofilament composition: the adult zebrafish heart lacks many of the myofilament proteins of differentiated adult cardiomyocytes such as the ventricular isoforms of myosin light chains and nebulette. Instead, troponin I and myozenin 1 were expressed as skeletal isoforms rather than cardiac isoforms. The relative immaturity of the adult zebrafish heart was further supported by cardiac microRNA data. Our assessment of zebrafish and mammalian hearts challenges the assertions on the translational potential of cardiac regeneration in the zebrafish model. The immature myofilament composition of the fish heart may explain why adult mouse and human cardiomyocytes lack this endogenous repair mechanism.