Unknown

Dataset Information

0

A novel algorithm to detect non-wear time from raw accelerometer data using deep convolutional neural networks.


ABSTRACT: To date, non-wear detection algorithms commonly employ a 30, 60, or even 90 mins interval or window in which acceleration values need to be below a threshold value. A major drawback of such intervals is that they need to be long enough to prevent false positives (type I errors), while short enough to prevent false negatives (type II errors), which limits detecting both short and longer episodes of non-wear time. In this paper, we propose a novel non-wear detection algorithm that eliminates the need for an interval. Rather than inspecting acceleration within intervals, we explore acceleration right before and right after an episode of non-wear time. We trained a deep convolutional neural network that was able to infer non-wear time by detecting when the accelerometer was removed and when it was placed back on again. We evaluate our algorithm against several baseline and existing non-wear algorithms, and our algorithm achieves a perfect precision, a recall of 0.9962, and an F1 score of 0.9981, outperforming all evaluated algorithms. Although our algorithm was developed using patterns learned from a hip-worn accelerometer, we propose algorithmic steps that can easily be applied to a wrist-worn accelerometer and a retrained classification model.

SUBMITTER: Syed S 

PROVIDER: S-EPMC8065130 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3184184 | biostudies-literature
| S-EPMC6010233 | biostudies-other
| S-EPMC5773911 | biostudies-literature
| S-EPMC8440289 | biostudies-literature
| S-EPMC5552800 | biostudies-other
| S-EPMC9836011 | biostudies-literature
| S-EPMC6925141 | biostudies-literature
| S-EPMC9044313 | biostudies-literature
| S-EPMC5808454 | biostudies-literature
| S-EPMC7832895 | biostudies-literature