Unknown

Dataset Information

0

Synthesis of a Coumarin-Based PPARγ Fluorescence Probe for Competitive Binding Assay.


ABSTRACT: Peroxisome proliferator-activated receptor γ (PPARγ) is a molecular target of metabolic syndrome and inflammatory disease. PPARγ is an important nuclear receptor and numerous PPARγ ligands were developed to date; thus, efficient assay methods are important. Here, we investigated the incorporation of 7-diethylamino coumarin into the PPARγ agonist rosiglitazone and used the compound in a binding assay for PPARγ. PPARγ-ligand-incorporated 7-methoxycoumarin, 1, showed weak fluorescence intensity in a previous report. We synthesized PPARγ-ligand-incorporating coumarin, 2, in this report, and it enhanced the fluorescence intensity. The PPARγ ligand 2 maintained the rosiglitazone activity. The obtained partial agonist 6 appeared to act through a novel mechanism. The fluorescence intensity of 2 and 6 increased by binding to the ligand binding domain (LBD) of PPARγ and the affinity of reported PPARγ ligands were evaluated using the probe.

SUBMITTER: Yoshikawa C 

PROVIDER: S-EPMC8070791 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3440185 | biostudies-literature
| S-EPMC4752479 | biostudies-literature
| S-EPMC10136212 | biostudies-literature
| S-EPMC6550397 | biostudies-literature
| S-EPMC4105783 | biostudies-literature
| S-EPMC4380538 | biostudies-literature
| S-EPMC4861924 | biostudies-literature
| S-EPMC5191144 | biostudies-literature
| S-EPMC4480155 | biostudies-literature
| S-EPMC3773999 | biostudies-literature