Project description:In patients with left ventricular heart failure (HF), the development of pulmonary hypertension (PH) and right ventricular (RV) dysfunction are frequent and have important impact on disease progression, morbidity, and mortality, and therefore warrant clinical attention. Pulmonary hypertension related to left heart disease (LHD) by far represents the most common form of PH, accounting for 65-80% of cases. The proper distinction between pulmonary arterial hypertension and PH-LHD may be challenging, yet it has direct therapeutic consequences. Despite recent advances in the pathophysiological understanding and clinical assessment, and adjustments in the haemodynamic definitions and classification of PH-LHD, the haemodynamic interrelations in combined post- and pre-capillary PH are complex, definitions and prognostic significance of haemodynamic variables characterizing the degree of pre-capillary PH in LHD remain suboptimal, and there are currently no evidence-based recommendations for the management of PH-LHD. Here, we highlight the prevalence and significance of PH and RV dysfunction in patients with both HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF), and provide insights into the complex pathophysiology of cardiopulmonary interaction in LHD, which may lead to the evolution from a 'left ventricular phenotype' to a 'right ventricular phenotype' across the natural history of HF. Furthermore, we propose to better define the individual phenotype of PH by integrating the clinical context, non-invasive assessment, and invasive haemodynamic variables in a structured diagnostic work-up. Finally, we challenge current definitions and diagnostic short falls, and discuss gaps in evidence, therapeutic options and the necessity for future developments in this context.
Project description:BackgroundMyxoma is an uncommon disease and its symptoms vary greatly depending on size, location and mobility. Right-sided myxoma, especially right ventricular myxoma, is much rarer, and the symptoms are alien and uncharacteristic. The lack of understandings poses challenges to prompt diagnosis and timely treatment.Case presentationA 44-year-old female patient was diagnosed with giant right ventricular tumor. Right heart failure and systemic congestion caused by right ventricular outflow tract obstruction were observed on this case. Surgery was performed to excise the mass which was measured at 9.5 * 5.0 cm and confirmed as myxoma pathologically.ConclusionsRight-side myxoma is easy to be unnoticed due to its low incident rate and atypical symptoms. Delay in surgical intervention might cause unrecoverable complications. More comprehensive understanding of the symptoms is expected to help improving the diagnose and treat of right-sided myxoma.
Project description:Pulmonary arterial hypertension (PAH) is an obstructive pulmonary vasculopathy, characterized by excess proliferation, apoptosis resistance, inflammation, fibrosis, and vasoconstriction. Although PAH therapies target some of these vascular abnormalities (primarily vasoconstriction), most do not directly benefit the right ventricle (RV). This is suboptimal because a patient's functional state and prognosis are largely determined by the success of the adaptation of the RV to the increased afterload. The RV initially hypertrophies but might ultimately decompensate, becoming dilated, hypokinetic, and fibrotic. A number of pathophysiologic abnormalities have been identified in the PAH RV, including: ischemia and hibernation (partially reflecting RV capillary rarefaction), autonomic activation (due to G protein receptor kinase 2-mediated downregulation and desensitization of ?-adrenergic receptors), mitochondrial-metabolic abnormalities (notably increased uncoupled glycolysis and glutaminolysis), and fibrosis. Many RV abnormalities are detectable using molecular imaging and might serve as biomarkers. Some molecular pathways, such as those regulating angiogenesis, metabolism, and mitochondrial dynamics, are similarly deranged in the RV and pulmonary vasculature, offering the possibility of therapies that treat the RV and pulmonary circulation. An important paradigm in PAH is that the RV and pulmonary circulation constitute a unified cardiopulmonary unit. Clinical trials of PAH pharmacotherapies should assess both components of the cardiopulmonary unit.
Project description:Pulmonary arterial hypertension (PAH) is no longer an orphan disease. There are three different classes of drugs for the treatment of PAH that are currently being used and an increasing number of patients are being treated with a single drug or combination therapy. During the last 25 yrs, new insights into the pathobiology of PAH have been gained. The classical mechanical concepts of pressure, flow, shear stress, right ventricle wall stress and impedance have been complemented with the new concepts of cell injury and repair and interactions of complex multicellular systems. Integrating these concepts will become critical as we design new medical therapies in order to change the prognosis of patients with these fatal diseases. This review intends to summarise recent pathobiological concepts of PAH and right ventricle failure mainly derived from human studies, which reflect the progress made in the understanding of this complex group of pulmonary vascular diseases.
Project description:Right ventricular failure (RVF) in pulmonary hypertension (PH) is associated with increased incidence of sudden death by a poorly explored mechanism. We test the hypothesis that PH promotes spontaneous ventricular fibrillation (VF) during a critical post-PH onset period characterized by a sudden increase in mortality.Rats received either a single subcutaneous dose of monocrotaline (MCT, 60 mg/kg) to induce PH-associated RVF (PH, n=24) or saline (control, n=17). Activation pattern of the RV-epicardial surface was mapped using voltage-sensitive dye in isolated Langendorff-perfused hearts along with single glass-microelectrode and ECG-recordings. MCT-injected rats developed severe PH by day 21 and progressed to RVF by approximately day 30. Rats manifested increased mortality, and ?30% rats died suddenly and precipitously during 23-32 days after MCT. This fatal period was associated with the initiation of spontaneous VF by a focal mechanism in the RV, which was subsequently maintained by both focal and incomplete reentrant wave fronts. Microelectrode recordings from the RV-epicardium at the onset of focal activity showed early afterdepolarization-mediated triggered activity that led to VF. The onset of the RV cellular triggered beats preceded left ventricular depolarizations by 23±8 ms. The RV but not the left ventricular cardiomyocytes isolated during this fatal period manifested significant action potential duration prolongation, dispersion, and an increased susceptibility to depolarization-induced repetitive activity. No spontaneous VF was observed in any of the control hearts. RVF was associated with significantly reduced RV ejection fraction (P<0.001), RV hypertrophy (P<0.001), and RV fibrosis (P<0.01). The hemodynamic function of the LV and its structure were preserved.PH-induced RVF is associated with a distinct phase of increased mortality characterized by spontaneous VF arising from the RV by an early afterdepolarization-mediated triggered activity.
Project description:Right ventricular failure was induced thourgh pulmonary banding in 11 pigs. Right ventricular failure was defined as a SRVP >50 mmHg during two hours. After right ventricular failure was induced, half the pigs were treatmed with a Glenn-shunt combined with pulmonary banding for one hour, and the other half served as control group with pulmonary banding only. The aim was to study the change in global gene expression during right ventricular failure due to pulmonary banding, and the effect of volume unloading during pulmonary banding. 11 pigs. Samples at the following time periods: 1) Baseline 2) Right ventricular failure 3) Treatment with modified Glenn-shunt/Control. After Right ventricular failure, pigs were divided into two groups a) Treatment with modified Glenn-shunt or b) Control group
Project description:To evaluate the relationships of right ventricular (RV) and left ventricular (LV) myocardial perfusion reserves with ventricular function and pulmonary hemodynamics in patients with pulmonary arterial hypertension (PAH) by using adenosine stress perfusion cardiac magnetic resonance (MR) imaging.This HIPAA-compliant study was institutional review board approved. Twenty-five patients known or suspected to have PAH underwent right heart catheterization and adenosine stress MR imaging on the same day. Sixteen matched healthy control subjects underwent cardiac MR imaging only. RV and LV perfusion values at rest and at adenosine-induced stress were calculated by using the Fermi function model. The MR imaging-derived RV and LV functional data were calculated by using dedicated software. Statistical testing included Kruskal-Wallis tests for continuous data, Spearman rank correlation tests, and multiple linear regression analyses.Seventeen of the 25 patients had PAH: 11 with scleroderma-associated PAH, and six with idiopathic PAH. The remaining eight patients had scleroderma without PAH. The myocardial perfusion reserve indexes (MPRIs) in the PAH group (median RV MPRI, 1.7 [25th-75th percentile range, 1.3-2.0]; median LV MPRI, 1.8 [25th-75th percentile range, 1.6-2.1]) were significantly lower than those in the scleroderma non-PAH (median RV MPRI, 2.5 [25th-75th percentile range, 1.8-3.9] [P = .03]; median LV MPRI, 4.1 [25th-75th percentile range, 2.6-4.8] [P = .0003]) and control (median RV MPRI, 2.9 [25th-75th percentile range, 2.6-3.6] [P < .01]; median LV MPRI, 3.6 [25th-75th percentile range, 2.7-4.1] [P < .01]) groups. There were significant correlations between biventricular MPRI and both mean pulmonary arterial pressure (mPAP) (RV MPRI: ρ = -0.59, Bonferroni P = .036; LV MPRI: ρ = -0.79, Bonferroni P < .002) and RV stroke work index (RV MPRI: ρ = -0.63, Bonferroni P = .01; LV MPRI: ρ = -0.75, Bonferroni P < .002). In linear regression analysis, mPAP and RV ejection fraction were independent predictors of RV MPRI. mPAP was an independent predictor of LV MPRI.Biventricular vasoreactivity is significantly reduced with PAH and inversely correlated with RV workload and ejection fraction, suggesting that reduced myocardial perfusion reserve may contribute to RV dysfunction in patients with PAH.
Project description:PURPOSE:Ascent to high altitude increases right ventricular (RV) afterload and decreases myocardial energy supply. This study evaluates physiologic variables and comprehensive echocardiographic indices of RV and right atrial (RA) function following rapid ascent to high altitude. METHODS:Fifty healthy volunteers actively ascended from 1130 to 4559 m in?<?22 h. All participants underwent 2D echocardiography during baseline examination at low altitude (424 m) and at three study time-points (7, 20 and 44 h) after arrival at high altitude. In addition to systolic pulmonary artery pressure (sPAP), comprehensive 2D planimetric-, tissue Doppler- and speckle-tracking-derived strain indices of RA and RV function were obtained. RESULTS:sPAP increased from baseline (24?±?4 mmHg) to the first altitude examination (39?±?8 mmHg, p?<?0.001) and remained elevated during the following 44 h. Global RV function did not change. RA reservoir strain showed a trend towards increase from baseline (50.2?±?12.1%) to the first altitude examination (53.8?±?11.0%, p?=?0.07) secondary to a significant increase of RA contraction strain (19.2?±?6.4 vs. 25.4?±?9.6%, p?<?0.001). Volumetric RA data largely paralleled RA strain results and RA active emptying volume was increased throughout the 44 h stay at high altitude. CONCLUSION:Active and rapid ascent of healthy individuals to 4559 m is associated with an increased contractile performance of the RA that compensates for the increased workload of the RV.