Project description:Coronavirus disease 2019 (COVID-19) was initially described as a viral infection of the respiratory tract. It is now known, however, that several other organs are affected, including the brain. Neurological manifestations such as stroke, encephalitis, and psychiatric conditions have been reported in COVID-19 patients, but the neurotropic potential of the virus is still debated. Herein, we sought to investigate SARS-CoV-2 infection in human neural cells. We demonstrated that SARS-CoV-2 infection of neural tissue is non-permissive, however, it can elicit inflammatory response and cell damage. These findings add to the hypothesis that most of the neural damage caused by SARS-CoV-2 infection is due to a systemic inflammation leading to indirect harmful effects on the central nervous system despite the absence of local viral replication.
Project description:Severe cases of COVID-19 are associated with extensive lung damage and the presence of infected multinucleated syncytial pneumocytes. The viral and cellular mechanisms regulating the formation of these syncytia are not well understood. Here, we show that SARS-CoV-2 infected cells express the Spike protein (S) at their surface and fuse with ACE2-positive neighbouring cells. Expression of S without any other viral proteins triggers syncytia formation. Interferon-induced transmembrane proteins (IFITMs), a family of restriction factors that block the entry of many viruses, inhibit S-mediated fusion, with IFITM1 being more active than IFITM2 and IFITM3. On the contrary, the TMPRSS2 serine protease, which is known to enhance infectivity of cell-free virions, processes both S and ACE2 and increases syncytia formation by accelerating the fusion process. TMPRSS2 thwarts the antiviral effect of IFITMs. Our results show that SARS-CoV-2 pathological effects are modulated by cellular proteins that either inhibit or facilitate syncytia formation.
Project description:Small ruminant morbillivirus (SRMV), formerly known as peste-des-petits-ruminants virus, classified into the genus Morbillivirus in the family Paramyxoviridae. Its L protein functions as the RNA-dependent RNA polymerases (RdRp) during viral replication. Due to the absence of efficient proofreading activity in their RdRps, various RNA viruses reveal high mutation frequencies, making them evolve rapidly during serial passages in cells, especially treated with a certain mutagen, like ribavirin. We have previously rescued a recombinant enhanced green fluorescence protein-tagged SRMV (rSRMV-eGFP) using reverse genetics. In this study, the rSRMV-eGFP was subjected to serial passages in ribavirin-treated cells. Due to the ribavirin-exerted selective pressure, it was speculated that viral progenies would form quasispecies after dozens of passages. Viral progenies at passage-10, -20, -30, -40, and -50 were separately subjected to next-generation sequencing (NGS), consequently revealing a total of 34 single-nucleotide variations, including five synonymous, 21 missense, and one non-sense mutations. The L sequence was found to harbor eight missense mutations during serial passaging. It was speculated that at least one high-fidelity variant was present in viral quasispecies at passage-50. If purified from the population of viral progenies, this putative variant would contribute to clarifying a molecular mechanism in viral high-fidelity replication in vitro.
Project description:Coronavirus disease 2019 (COVID-19) was initially described as a viral infection of the respiratory tract. It is now known, however, that many other biological systems are affected, including the central nervous system (CNS). Neurological manifestations such as stroke, encephalitis, and psychiatric conditions have been reported in COVID-19 patients, but its neurotropic potential is still debated. Here, we investigate the presence of SARS-CoV-2 in the brain from an infant patient deceased from COVID-19. The susceptibility to virus infection was compatible with the expression levels of viral receptor ACE2, which is increased in the ChP in comparison to other brain areas. To better comprehend the dynamics of the viral infection in neural cells, we exposed human neurospheres to SARS-CoV-2. Similarly to the human tissue, we found viral RNA in neurospheres, although viral particles in the culture supernatant were not infective. Based on our observations in vivo and in vitro , we hypothesize that SARS-CoV-2 does not generate productive infection in developing neural cells and that infection of ChP weakens the blood-cerebrospinal fluid barrier allowing viruses, immune cells, and cytokines to access the CNS, causing neural damage in the young brain.
Project description:Congenital human cytomegalovirus (HCMV) infection is the most frequent infectious cause of birth defects, primarily neurological disorders. Neural progenitor/stem cells (NPCs) are the major cell type in the subventricular zone and are susceptible to HCMV infection. In culture, the differentiation status of NPCs may change with passage, which in turn may alter susceptibility to virus infection. Previously, only early-passage (i.e., prior to passage 9) NPCs were studied and shown to be permissive to HCMV infection. In this study, NPC cultures derived at different gestational ages were evaluated after short (passages 3 to 6) and extended (passages 11 to 20) in vitro passages for biological and virological parameters (i.e., cell morphology, expression of NPC markers and HCMV receptors, viral entry efficiency, viral gene expression, virus-induced cytopathic effect, and release of infectious progeny). These parameters were not significantly influenced by the gestational age of the source tissues. However, extended-passage cultures showed evidence of initiation of differentiation, increased viral entry, and more efficient production of infectious progeny. These results confirm that NPCs are fully permissive for HCMV infection and that extended-passage NPCs initiate differentiation and are more permissive for HCMV infection. Later-passage NPCs being differentiated and more permissive for HCMV infection suggest that HCMV infection in fetal brain may cause more neural cell loss and give rise to severe neurological disabilities with advancing brain development.
Project description:Since its outbreak in 2019, Severe Acute Respiratory Syndrome Coronavirus 2 keeps surprising the medical community by evolving diverse immune escape mutations in a rapid and effective manner. To gain deeper insight into mutation frequency and dynamics, we isolated ten ancestral strains of SARS-CoV-2 and performed consecutive serial incubation in ten replications in a suitable and common cell line and subsequently analysed them using RT-qPCR and whole genome sequencing. Along those lines we hoped to gain fundamental insights into the evolutionary capacity of SARS-CoV-2 in vitro. Our results identified a series of adaptive genetic changes, ranging from unique convergent substitutional mutations and hitherto undescribed insertions. The region coding for spike proved to be a mutational hotspot, evolving a number of mutational changes including the already known substitutions at positions S:484 and S:501. We discuss the evolution of all specific adaptations as well as possible reasons for the seemingly inhomogeneous potential of SARS-CoV-2 in the adaptation to cell culture. The combination of serial passage in vitro with whole genome sequencing uncovers the immense mutational potential of some SARS-CoV-2 strains. The observed genetic changes of SARS-CoV-2 in vitro could not be explained solely by selectively neutral mutations but possibly resulted from the action of directional selection accumulating favourable genetic changes in the evolving variants, along the path of increasing potency of the strain. Competition among a high number of quasi-species in the SARS-CoV-2 in vitro population gene pool may reinforce directional selection and boost the speed of evolutionary change.
Project description:Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa which affects both ruminants and humans. RVF causes serious damage to the livestock industry and is also a threat to public health. The Rift Valley fever virus has a segmented negative-stranded RNA genome consisting of Large (L)-, Medium (M)-, and Small (S)-segments. The live-attenuated MP-12 vaccine is immunogenic in livestock and humans, and is conditionally licensed for veterinary use in the U.S. The MP-12 strain encodes 23 mutations (nine amino acid substitutions) and is attenuated through a combination of mutations in the L-, M-, and S-segments. Among them, the M-U795C, M-A3564G, and L-G3104A mutations contribute to viral attenuation through the L- and M-segments. The M-U795C, M-A3564G, L-U533C, and L-G3750A mutations are also independently responsible for temperature-sensitive (ts) phenotype. We hypothesized that a serial passage of the MP-12 vaccine in culture cells causes reversions of the MP-12 genome. The MP-12 vaccine and recombinant rMP12-?NSs16/198 were serially passaged 25 times. Droplet digital PCR analysis revealed that the reversion occurred at L-G3750A during passages of MP-12 in Vero or MRC-5 cells. The reversion also occurred at M-A3564G and L-U533C of rMP12-?NSs16/198 in Vero cells. Reversion mutations were not found in MP-12 or the variant, rMP12-TOSNSs, in the brains of mice with encephalitis. This study characterized genetic stability of the MP-12 vaccine and the potential risk of reversion mutation at the L-G3750A ts mutation after excessive viral passages in culture cells.
Project description:We performed transcriptomic profiling of cells derived from human induced pluripotent stem cells (iPSCs) using a directed differentiation protocol to generate mesenchyme free, regionally patterned intestinal organoids. These organoids were then infected with SARS-CoV-2, and sequencing was performed 1 and 4 days post infection