Unknown

Dataset Information

0

Effect of urea concentration on properties of peanut protein isolate, arachin and conarachin-based adhesives during urea-epichlorohydrin modification.


ABSTRACT: To lay a theoretical basis for the preparation of peanut protein-based adhesives and promote the sustainable development of the adhesive industry, properties of peanut protein isolate (PPI), arachin and conarachin-based adhesives modified by urea and epichlorohydrin (ECH) were investigated under different urea concentrations. When the urea concentration was 2 mol l-1, the wet shear strength of the PPI-based adhesive was 1.24 MPa with the best water resistance. With the increase of urea concentration from 0 to 4 mol l-1, the apparent viscosity of the PPI-based adhesive increased from 3.87 to 136.80 Pa s and the solid content increased from 18.11% to 31.11%. Compared with conarachin-based adhesive, the properties of arachin-based adhesive were improved more obviously during the combined modification. Scanning electron microscopy images illustrated that when the urea concentration was 2 mol l-1, the surface of the PPI-based adhesive was more compact and smoother, which was beneficial to the improvement of water resistance and related to the structure changes of arachin and conarachin components. Fourier-transform infrared spectroscopy results indicated that different urea concentrations caused the change of ester and ether bonds in the PPI-based adhesive, which was mainly related to arachin component. Thermogravimetry results suggested that when the urea concentration was 2 mol l-1, the decomposition temperature of protein skeleton in the PPI-based adhesive reached a maximum of 314°C exhibiting the highest thermal stability. The improvement of the thermal stability of conarachin was greater than that of arachin during the combined modification.

SUBMITTER: Chen C 

PROVIDER: S-EPMC8074907 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6894569 | biostudies-literature
| S-EPMC9960572 | biostudies-literature
| S-EPMC6403862 | biostudies-literature
| S-EPMC8479007 | biostudies-literature
| S-EPMC2710188 | biostudies-literature
| S-EPMC4926928 | biostudies-literature
| S-EPMC8707940 | biostudies-literature
| S-EPMC8231771 | biostudies-literature
| S-EPMC3380644 | biostudies-literature
| S-EPMC9513179 | biostudies-literature