Pharmacological inhibition of dynamin-related protein 1 attenuates skeletal muscle insulin resistance in obesity.
Ontology highlight
ABSTRACT: Dynamin-related protein-1 (Drp1) is a key regulator in mitochondrial fission. Excessive Drp1-mediated mitochondrial fission in skeletal muscle under the obese condition is associated with impaired insulin action. However, it remains unknown whether pharmacological inhibition of Drp1, using the Drp1-specific inhibitor Mitochondrial Division Inhibitor 1 (Mdivi-1), is effective in alleviating skeletal muscle insulin resistance and improving whole-body metabolic health under the obese and insulin-resistant condition. We subjected C57BL/6J mice to a high-fat diet (HFD) or low-fat diet (LFD) for 5-weeks. HFD-fed mice received Mdivi-1 or saline injections for the last week of the diet intervention. Additionally, myotubes derived from obese insulin-resistant humans were treated with Mdivi-1 or saline for 12 h. We measured glucose area under the curve (AUC) from a glucose tolerance test (GTT), skeletal muscle insulin action, mitochondrial dynamics, respiration, and H2 O2 content. We found that Mdivi-1 attenuated impairments in skeletal muscle insulin signaling and blood glucose AUC from a GTT induced by HFD feeding (p < 0.05). H2 O2 content was elevated in skeletal muscle from the HFD group (vs. LFD, p < 0.05), but was reduced with Mdivi-1 treatment, which may partially explain the improvement in skeletal muscle insulin action. Similarly, Mdivi-1 enhanced the mitochondrial network structure, reduced reactive oxygen species, and improved insulin action in myotubes from obese humans (vs. saline, p < 0.05). In conclusion, inhibiting Drp1 with short-term Mdivi-1 administration attenuates the impairment in skeletal muscle insulin signaling and improves whole-body glucose tolerance in the setting of obesity-induced insulin resistance. Targeting Drp1 may be a viable approach to treat obesity-induced insulin resistance.
SUBMITTER: Kugler BA
PROVIDER: S-EPMC8077121 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA