Ontology highlight
ABSTRACT: Background
To further reduce malaria burden, identification of areas with highest burden for targeted interventions needs to occur. Routine health information has the potential to indicate where and when clinical malaria occurs the most. Developing countries mostly use paper-based data systems however they are error-prone as they require manual aggregation, tallying and transferring of data. Piloting was done using electronic data capture (EDC) with a cheap and user friendly software in rural Malawian primary healthcare setting to improve the quality of health records.Methods
Audit and feedback tools from the Joanna Briggs Institute (Practical Application of Clinical Evidence System and Getting Research into Practice) were used in four primary healthcare facilities. Using this approach, the best available evidence for a malaria information system (MIS) was identified. Baseline audit of the existing MIS was conducted in the facilities based on available best practice for MIS; this included ensuring data consistency and completeness in MIS by sampling 25 random records of malaria positive cases. Implementation of an adapted evidence-based EDC system using tablets on an OpenDataKit platform was done. An end line audit following implementation was then conducted. Users had interviews on experiences and challenges concerning EDC at the beginning and end of the survey.Results
The existing MIS was paper-based, occupied huge storage space, had some data losses due to torn out papers and were illegible in some facilities. The existing MIS did not have documentation of necessary parameters, such as malaria deaths and treatment within 14 days. Training manuals and modules were absent. One health centre solely had data completeness and consistency at 100% of the malaria-positive sampled records. Data completeness and consistency rose to 100% with readily available records containing information on recent malaria treatment. Interview findings at the end of the survey showed that EDC was acceptable among users and they agreed that the tablets and the OpenDataKit were easy to use, improved productivity and quality of care.Conclusions
Improvement of data quality and use in the Malawian rural facilities was achieved through the introduction of EDC using OpenDataKit. Health workers in the facilities showed satisfaction with the use of EDC.
SUBMITTER: Tizifa TA
PROVIDER: S-EPMC8077781 | biostudies-literature |
REPOSITORIES: biostudies-literature