Project description:Dent disease is an inherited proximal renal tubulopathy leading to low molecular weight proteinuria, hypercalciuria with nephrocalcinosis and nephrolithiasis, and progressive renal failure. Two genetic mutations have been identified. The disease usually presents in childhood or early adult life and may be associated with other proximal tubular defects, which can lead to significant morbidity, especially in children. The disorder can extend to interstitial and glomerular cells, which contributes to progression to end-stage kidney disease. The pathophysiologic process remains incompletely understood, and no specific treatment is available. Dent disease is likely under-recognized. It needs to be included in the differential, especially in young males, presenting with recurrent kidney stones, proteinuria, and impaired renal function.
Project description:We describe the case of a healthy patient with moderate COVID-19 infection without thrombophilia nor coronary disease background who presented with a relapsing thrombotic occlusion of the right coronary artery despite normal oxygenation, adequate antiaggregation and prophylactic anticoagulation. Prophylactic anticoagulation recommendations in COVID-19 were inadequate for this patient. Further data are needed to propose full-dose therapeutic anticoagulation for patients with coronary thrombosis and COVID-19 infection. This could nevertheless be considered even in mild forms of COVID-19.
Project description:We describe the case of a 43-year-old woman with transient ischemic neurologic deficits and recurrent systemic and pulmonary emboli in whom infectious work-up and extensive thrombophilic evaluation were unremarkable. Transesophageal echocardiography (TEE) established the diagnosis of nonbacterial thrombotic endocarditis (NBTE). This is a rare condition often associated with hypercoagulable states or advanced malignancy such as adenocarcinomas, characterized by cardiac vegetations along valvular coaptation lines without destruction of leaflets. In our patient, we diagnosed an ovarian clear cell adenocarcinoma, a malignant disorder that has been rarely reported in association with NBTE. This case illustrates that NBTE can present as an atypical manifestation of malignancy and must be distinguished from infective endocarditis, which implies a different therapeutic strategy. When confronted with findings of NBTE without a clear etiology, an occult neoplasm must be excluded. Anticoagulant therapy is the mainstay of treatment. However, cardiac vegetations may require surgical intervention in rare instances.
Project description:BackgroundConvergent and parallel evolution provide unique insights into the mechanisms of natural selection. Some of the most striking convergent and parallel (collectively recurrent) amino acid substitutions in proteins are adaptive, but there are also many that are selectively neutral. Accordingly, genome-wide assessment has shown that recurrent sequence evolution in orthologs is chiefly explained by nearly neutral evolution. For paralogs, more frequent functional change is expected because additional copies are generally not retained if they do not acquire their own niche. Yet, it is unknown to what extent recurrent sequence differentiation is discernible after independent gene duplications in different eukaryotic taxa.ResultsWe develop a framework that detects patterns of recurrent sequence evolution in duplicated genes. This is used to analyze the genomes of 90 diverse eukaryotes. We find a remarkable number of families with a potentially predictable functional differentiation following gene duplication. In some protein families, more than ten independent duplications show a similar sequence-level differentiation between paralogs. Based on further analysis, the sequence divergence is found to be generally asymmetric. Moreover, about 6% of the recurrent sequence evolution between paralog pairs can be attributed to recurrent differentiation of subcellular localization. Finally, we reveal the specific recurrent patterns for the gene families Hint1/Hint2, Sco1/Sco2 and vma11/vma3.ConclusionsThe presented methodology provides a means to study the biochemical underpinning of functional differentiation between paralogs. For instance, two abundantly repeated substitutions are identified between independently derived Sco1 and Sco2 paralogs. Such identified substitutions allow direct experimental testing of the biological role of these residues for the repeated functional differentiation. We also uncover a diverse set of families with recurrent sequence evolution and reveal trends in the functional and evolutionary trajectories of this hitherto understudied phenomenon.
Project description:The study of intracellular gene transfer may allow for the detection of interesting evolutionary processes such as ancient polyploidization. We compared 24 plastid genomes (plastomes) from tribe Delphinieae, one from tribe Nigelleae and one from tribe Ranunculeae, including five newly sequenced genomes. The functional transfers of the plastids rpl32 and rps16 to the nucleus in tribe Delphinieae were identified. Unexpectedly, we discovered multiple divergent copies of the nuclear-encoded plastid rpl32 in the genus Aconitum. Phylogenetic and synonymous substitution rate analyses revealed that the nuclear-encoded plastid rpl32 underwent two major duplication events. These ancient gene duplication events probably occurred via multiple polyploidization events in Aconitum between 11.9 and 24.7 Mya. Furthermore, our sequence rate analysis indicated that the eight plastid-encoded rpl subunits in Aconitum had a significantly accelerated evolutionary rate compared to those in other genera, suggesting that highly divergent paralogs targeted to the plastid may contribute to an elevated rate of evolution in plastid rpl genes. In addition, heteroplasmy of the plastid matK from two Aconitum species suggested the existence of potentially functional plastid maturases in its plastome. Our results provide insight into the evolutionary history of the tribe Delphinieae.
Project description:Transposable elements (TEs) comprise large fractions of many eukaryotic genomes and imperil host genome integrity. The host genome combats these challenges by encoding proteins that silence TE activity. Both the introduction of new TEs via horizontal transfer and TE sequence evolution requires constant innovation of host-encoded TE silencing machinery to keep pace with TEs. One form of host innovation is the adaptation of existing, single-copy host genes. Indeed, host suppressors of TE replication often harbor signatures of positive selection. Such signatures are especially evident in genes encoding the piwi-interacting-RNA pathway of gene silencing, for example, the female germline-restricted TE silencer, HP1D/Rhino Host genomes can also innovate via gene duplication and divergence. However, the importance of gene family expansions, contractions, and gene turnover to host genome defense has been largely unexplored. Here, we functionally characterize Oxpecker, a young, tandem duplicate gene of HP1D/rhino We demonstrate that Oxpecker supports female fertility in Drosophila melanogaster and silences several TE families that are incompletely silenced by HP1D/Rhino in the female germline. We further show that, like Oxpecker, at least ten additional, structurally diverse, HP1D/rhino-derived daughter and "granddaughter" genes emerged during a short 15-million year period of Drosophila evolution. These young paralogs are transcribed primarily in germline tissues, where the genetic conflict between host genomes and TEs plays out. Our findings suggest that gene family expansion is an underappreciated yet potent evolutionary mechanism of genome defense diversification.
Project description:The correct interpretation of any phylogenetic tree is dependent on that tree being correctly rooted. We present STRIDE, a fast, effective, and outgroup-free method for identification of gene duplication events and species tree root inference in large-scale molecular phylogenetic analyses. STRIDE identifies sets of well-supported in-group gene duplication events from a set of unrooted gene trees, and analyses these events to infer a probability distribution over an unrooted species tree for the location of its root. We show that STRIDE correctly identifies the root of the species tree in multiple large-scale molecular phylogenetic data sets spanning a wide range of timescales and taxonomic groups. We demonstrate that the novel probability model implemented in STRIDE can accurately represent the ambiguity in species tree root assignment for data sets where information is limited. Furthermore, application of STRIDE to outgroup-free inference of the origin of the eukaryotic tree resulted in a root probability distribution that provides additional support for leading hypotheses for the origin of the eukaryotes.
Project description:BackgroundRecurrent gene duplication and retention played an important role in angiosperm genome evolution. It has been hypothesized that these processes contribute significantly to plant adaptation but so far this hypothesis has not been tested at the genome scale.ResultsWe studied available sequenced angiosperm genomes to assess the frequency of positive selection footprints in lineage specific expanded (LSE) gene families compared to single-copy genes using a dN/dS-based test in a phylogenetic framework. We found 5.38% of alignments in LSE genes with codons under positive selection. In contrast, we found no evidence for codons under positive selection in the single-copy reference set. An analysis at the branch level shows that purifying selection acted more strongly on single-copy genes than on LSE gene clusters. Moreover we detect significantly more branches indicating evolution under positive selection and/or relaxed constraint in LSE genes than in single-copy genes.ConclusionsIn this - to our knowledge -first genome-scale study we provide strong empirical support for the hypothesis that LSE genes fuel adaptation in angiosperms. Our conservative approach for detecting selection footprints as well as our results can be of interest for further studies on (plant) gene family evolution.