Project description:This analysis focuses on the lockdown measures in the context of the Covid-19 crisis in Spring 2020 in Germany. In a randomized survey experiment, respondents were asked to evaluate their current life satisfaction after being provided with varying degrees of information about the lethality of Covid-19. We use reactance as a measure of the intensity of a preference for freedom to explain the variation in the observed subjective life satisfaction loss. Our results suggest that it is not high reactance alone that is associated with large losses of life satisfaction due to the curtailment of liberties. The satisfaction loss occurs in particular in combination with receiving information about the (previously overestimated) lethality of Covid-19.Supplementary informationThe online version contains supplementary material available at 10.1007/s10902-021-00491-1.
Project description:Why have some countries been more successful in their COVID-19 vaccine rollouts than others? Despite efforts by governments to vaccinate their adult populations against COVID-19, vaccination rates remain irregularly low in some countries. We suggest that a crucial piece of this puzzle lies in resistance against government directives from the public due to civil liberty protections. Countries with greater protections for civil liberties can be expected to have lower vaccinations administered than countries with fewer protections, as the public enjoys a sense of freedom regarding their private lives. In such countries, de jure constraints on government policies are complemented by the fear of public backlash, even in crises; consequently, beyond structural limitations, governments with high levels of civil liberty protections face an additional hurdle in managing the COVID-19 crisis. Evidence for this hypothesis is presented for 153 countries by combining civil liberty scores with newly available data on COVID-19 vaccinations.
Project description:The devastating pandemic due to SARS-CoV-2 and the emergence of antigenic variants that jeopardize the efficacy of current vaccines create an urgent need for a comprehensive understanding of the pathophysiology of COVID-19, including the contribution of inflammation to disease. It also warrants for the search of immunomodulatory drugs that could improve disease outcome. Here, we show that standard doses of ivermectin (IVM), an anti-parasitic drug with potential immunomodulatory activities through the cholinergic anti-inflammatory pathway, prevents clinical deterioration, reduces olfactory deficit and limits the inflammation of the upper and lower respiratory tracts in SARS-CoV-2-infected hamsters. Whereas it has no effect on viral load in the airways of infected animals, transcriptomic analyses of infected lungs reveal that IVM dampens type-I interferon responses and modulates several other inflammatory pathways. In particular, IVM dramatically reduces the Il-6/Il-10 ratio in lung tissue and promotes macrophage M2 polarization, which might account for the more favorable clinical presentation of IVM-treated animals. Altogether, this study supports the use of immunomodulatory drugs such as IVM, to improve the clinical condition of SARS-CoV-2-infected patients.
Project description:Limiting infection transmission is central to the safety of all in dentistry, particularly during the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Aerosol-generating procedures (AGPs) are crucial to the practice of dentistry; it is imperative to understand the inherent risks of viral dispersion associated with AGPs and the efficacy of available mitigation strategies. In a dental surgery setting, crown preparation and root canal access procedures were performed with an air turbine or high-speed contra-angle handpiece (HSCAH), with mitigation via rubber dam or high-volume aspiration and a no-mitigation control. A phantom head was used with a 1.5-mL min-1 flow of artificial saliva infected with Φ6-bacteriophage (a surrogate virus for SARS-CoV-2) at ~108 plaque-forming units mL-1, reflecting the upper limits of reported salivary SARS-CoV-2 levels. Bioaerosol dispersal was measured using agar settle plates lawned with the Φ6-bacteriophage host, Pseudomonas syringae. Viral air concentrations were assessed using MicroBio MB2 air sampling and particle quantities using Kanomax 3889 GEOα counters. Compared to an air turbine, the HSCAH reduced settled bioaerosols by 99.72%, 100.00%, and 100.00% for no mitigation, aspiration, and rubber dam, respectively. Bacteriophage concentrations in the air were reduced by 99.98%, 100.00%, and 100.00% with the same mitigations. Use of the HSCAH with high-volume aspiration resulted in no detectable bacteriophage, both on nonsplatter settle plates and in air samples taken 6 to 10 min postprocedure. To our knowledge, this study is the first to report the aerosolization in a dental clinic of active virus as a marker for risk determination. While this model represents a worst-case scenario for possible SARS-CoV-2 dispersal, these data showed that the use of HSCAHs can vastly reduce the risk of viral aerosolization and therefore remove the need for clinic fallow time. Furthermore, our findings indicate that the use of particle analysis alone cannot provide sufficient insight to understand bioaerosol infection risk.
Project description:Although COVID-19 vaccines are globally available, waning immunity and emerging vaccine-evasive variants of concern have hindered the international response and transition to a post-pandemic era. Testing to identify and isolate infectious individuals remains the most proactive strategy for containing an ongoing COVID-19 outbreak. We developed a stochastic, compartmentalized model to simulate the impact of using Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) assays, rapid antigen tests, and vaccinations on SARS-CoV-2 spread. We compare testing strategies across an example high-income country (the United States) and low- and middle-income country (India). We detail the optimal testing frequency and coverage in the US and India to mitigate an emerging outbreak even in a vaccinated population: overall, maximizing testing frequency is most important, but having high testing coverage remains necessary when there is sustained transmission. A resource-limited vaccination strategy still requires high-frequency testing to minimize subsequent outbreaks and is 16.50% more effective in reducing cases in India than the United States. Tailoring testing strategies to transmission settings can help effectively reduce disease burden more than if a uniform approach were employed without regard to epidemiological variability across locations.
Project description:BackgroundChildren infected with SARS-CoV-2 are often asymptomatic or have only mild symptoms, leading to underestimation of disease prevalence in symptom-based testing strategies.ObjectivesThis study sought to determine pediatric SARS-CoV-2 disease burden during local mitigation efforts by using antibody testing to compare seroprevalence estimates to cumulative PCR prevalence estimates.Study designIn this cross-sectional study, we collected 1142 strict phase and 1196 relaxed phase remnant blood specimens from patients less than 19-years-old in southwestern Pennsylvania (SWPA). Patients were excluded if their residential zip code was outside the region of interest, if they were under 6-months-old, or they had recently received antibody-modifying treatments. Demographic, encounter, and laboratory electronic medical record information was extracted. Samples were tested for SARS-CoV-2 spike protein IgG using an EUA ELISA, and PCR results were recorded from county health department data. Seroprevalence and Clopper-Pearson exact 95% confidence intervals were calculated.ResultsThe observed seroprevalence of SARS-CoV-2 spike protein antibodies in children during strictest mitigation was 0.53% (95% CI 0.19, 1.14) and 0.92% (95% CI 0.46,1.64) during moderately relaxed. Strict and relaxed phase PCR-based prevalence were significantly higher, 2.87% (95% CI 1.95, 4.08) and 3.64 (95% CI 3.01, 4.38), respectively.ConclusionsEstimates of pediatric seroprevalence were significantly lower than cumulative PCR prevalence estimates, and less than adult seroprevalence estimates, potentially due to biological, population, or sampling differences. Biological differences in pediatric immune responses to SARS-CoV-2 may make serosurvey interpretation challenging and these differences warrant further study.
Project description:In Fall 2020, universities saw extensive transmission of SARS-CoV-2 among their populations, threatening health of the university and surrounding communities, and viability of in-person instruction. Here we report a case study at the University of Illinois at Urbana-Champaign, where a multimodal "SHIELD: Target, Test, and Tell" program, with other non-pharmaceutical interventions, was employed to keep classrooms and laboratories open. The program included epidemiological modeling and surveillance, fast/frequent testing using a novel low-cost and scalable saliva-based RT-qPCR assay for SARS-CoV-2 that bypasses RNA extraction, called covidSHIELD, and digital tools for communication and compliance. In Fall 2020, we performed >1,000,000 covidSHIELD tests, positivity rates remained low, we had zero COVID-19-related hospitalizations or deaths amongst our university community, and mortality in the surrounding Champaign County was reduced more than 4-fold relative to expected. This case study shows that fast/frequent testing and other interventions mitigated transmission of SARS-CoV-2 at a large public university.