Unknown

Dataset Information

0

Inhibitory effect of anti-HIV compounds extracted from Indian medicinal plants to retard the replication and transcription process of SARS-CoV-2: an insight from molecular docking and MD-simulation studies.


ABSTRACT: Outbreak of Coronavirus (SARS-CoV-2) has thrown a big challenge to the globe by snatching millions of human lives from the world. In this study, inhibitory efficiency of ten anti-HIV compounds from different Indian medicinal plant parts have been virtually screened against Mpro, PLpro and RdRp proteins of SARS-CoV-2. The molecular docking study reflected that among these compounds, Proptine (PTP) has the highest binding affinity for the three cases. Introduction of PTP molecules within the binding pocket of these proteins showed a large structural and conformational changes on the structure of proteins which is revealed from molecular dynamics (MD) simulation studies. RMSD, RMSF and analysis of thermodynamic parameters also revealed that PTP makes a huge impact on the structures of the respective proteins which will pave an opportunity for doing advanced experimental research to evaluate the potential drug to combat COVID-19.

Supplementary information

The online version contains supplementary material available at 10.1007/s13721-021-00309-3.

SUBMITTER: Dutta T 

PROVIDER: S-EPMC8084713 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7266611 | biostudies-literature
| S-EPMC7831893 | biostudies-literature
| S-EPMC8142029 | biostudies-literature
| S-EPMC3037352 | biostudies-literature
| S-EPMC9317904 | biostudies-literature
| S-EPMC4366434 | biostudies-literature
| S-EPMC7484585 | biostudies-literature
| S-EPMC7532348 | biostudies-literature
| S-EPMC5950840 | biostudies-literature
| S-EPMC5569448 | biostudies-literature