Project description:ObjectivesTo investigate risk factors for non-invasive/invasive ventilatory support (NI/I-VS) in patients with coronavirus disease 2019 (COVID-19).MethodsAll consecutive patients admitted to the Infectious Diseases Unit and Intensive Care Unit (ICU) of Santa Maria Annunziata Hospital (Florence, Italy), from February 25 to April 25, 2020, with a confirmed COVID-19 diagnosis were enrolled in this retrospective cohort study. NI/I-VS was defined as the need for continuous positive airway pressure (CPAP) or bilevel positive airway pressure (BPAP) (non-invasive ventilation) or mechanical ventilation, not including low-flow systems of oxygen therapy such as the Venturi mask or nasal cannula.ResultsNinety-seven patients were enrolled; 61.9% (60/97) were male and the median patient age was 64 years. The in-hospital mortality was 9.3%. Thirty-five of the 97 patients (36%) required ICU admission and 94.8% (92/97) were prescribed oxygen therapy: 10.8% (10/92) by nasal cannula, 44.5% (41/92) by Venturi mask, 31.5% (29/92) by CPAP, 2.2% (2/92) by BPAP, and 10.8% (10/92) by mechanical ventilation following intubation. On univariate analysis, patients with a body mass index >30, type II diabetes mellitus, and those presenting with dyspnoea, asthenia, SOFA score ≥2 points, PaO2/FiO2 <300, temperature >38 °C, increased levels of lactate dehydrogenase (LDH), alanine aminotransferase, and C-reactive protein, and a d-dimer >1000 ng/mL at admission more frequently underwent NI/I-VS. Multivariate logistic regression analysis confirmed temperature >38 °C (odds ratio (OR) 21.2, 95% confidential interval (95% CI) 3.5-124.5, p = 0.001), LDH >250 U/l (OR 15.2, 95% CI 1.8-128.8, p = 0.012), and d-dimer >1000 ng/mL (OR 4.5, 95% CI 1.2-17.3, p = 0.027) as significantly associated with the requirement for NI/I-VS. A non-significant trend (p = 0.051) was described for PaO2/FiO2 <300.ConclusionsTemperature >38 °C, LDH > 250 U/l, and d-dimer >1000 ng/mL were found to be independent risk factors for NI/I-VS in COVID-19 patients. In order to quickly identify patients likely at risk of developing a critical illness, inflammatory markers should be assessed upon hospital admission.
Project description:The rapid worldwide spread of the Coronavirus disease (COVID-19) crisis has put health systems under pressure to a level never experienced before, putting intensive care units in a position to fail to meet an exponentially growing demand. The main clinical feature of the disease is a progressive arterial hypoxemia which rapidly leads to ARDS which makes the use of intensive care and mechanical ventilation almost inevitable. The difficulty of health systems to guarantee a corresponding supply of resources in intensive care, together with the uncertain results reported in the literature with respect to patients who undergo early conventional ventilation, make the search for alternative methods of oxygenation and ventilation and potentially preventive of the need for tracheal intubation, such as non-invasive respiratory support techniques particularly valuable. In this context, the Emergency Department, located between the area outside the hospital and hospital ward and ICU, assumes the role of a crucial junction, due to the possibility of applying these techniques at a sufficiently early stage and being able to rapidly evaluate their effectiveness. This position paper describes the indications for the use of non-invasive respiratory support techniques in respiratory failure secondary to COVID-19-related pneumonia, formulated by the Non-invasive Ventilation Faculty of the Italian Society of Emergency Medicine (SIMEU) on the base of what is available in the literature and on the authors' direct experience. Rationale, literature, tips & tricks, resources, risks and expected results, and patient interaction will be discussed for each one of the escalating non-invasive respiratory techniques: standard oxygen, HFNCO, CPAP, NIPPV, and awake self-repositioning. The final chapter describes our suggested approach to the failing patient.
Project description:Introduction and aimNon-invasive ventilation (NIV) and continuous positive airway pressure (CPAP) have been widely employed to treat acute respiratory failure secondary to COVID-19 pneumonia, but their role in terms of efficacy and safety are still debated. The aim of this review was to analyse mortality and intubation rates in COVID-19 patients treated with NIV/CPAP.MethodsRapid review methodology was applied to include all the studies published since December-2019 until November-2020 with available data on in-hospital mortality in COVID-19 patients treated with NIV or CPAP.Results23 manuscripts were included (4776 patients, 66% males, 46% with hypertension). 46% of patients received non-invasive respiratory support, of which 48.4% with CPAP, 46% with NIV, and 4% with either CPAP or NIV. Non-invasive respiratory support failed in 47.7% of patients, of which 26.5% were intubated and 40.9% died. In-hospital mortality was higher in patients treated with NIV compared with CPAP (35.1% vs. 22.2%). Complications were under-reported, but mostly not related to CPAP/NIV treatment.ConclusionCPAP and NIV appear equally and frequently applied in patients with COVID-19 pneumonia, but associated with high mortality. Robust evidence is urgently needed to confirm the clinical efficacy of non-invasive respiratory support in COVID-19-related ARDS.
Project description:The novel coronavirus called "Severe Acute Respiratory Syndrome Coronavirus 2" (SARS-CoV-2) caused an outbreak in December 2019, starting from the Chinese city of Wuhan, in the Hubei province, and rapidly spreading to the rest of the world. Consequently, the World Health Organization (WHO) declared that the coronavirus disease of 2019 (COVID-19) can be characterized as a pandemic. During COVID-19 several immunological alterations have been observed: in plasma of severe patients, inflammatory cytokines are at a much higher concentration ("cytokine storm"). These aspects are associated with pulmonary inflammation and parenchymal infiltrates with an extensive lung tissue damage in COVID-19 patients. To date, clinical evidence and guidelines based on reliable data and randomized clinical trials (RCTs) for the treatment of COVID-19 are lacking. In the absence of definitive management protocols, many treatments are currently being evaluated worldwide. Some of these options were soon abandoned due to ineffectiveness, while others showed promising results. As for ventilatory strategies, at the moment there are still no consistent data published about the different approaches and how they may influence disease progression. What will probably represent the real solution to this pandemic is the identification of a safe and effective vaccine, for which enormous efforts and investments are being put in place. This review will summarize the state-of-the-art of COVID-19 current treatment options and those potentially available in the future, as well as high flow oxygen therapy and non-invasive mechanical ventilation approaches.
Project description:(1) Background: Different clinical presentations in COVID-19 are described to date, from mild to severe cases. This study aims to identify different clinical phenotypes in COVID-19 pneumonia using cluster analysis and to assess the prognostic impact among identified clusters in such patients. (2) Methods: Cluster analysis including 11 phenotypic variables was performed in a large cohort of 12,066 COVID-19 patients, collected and followed-up from 1 March to 31 July 2020, from the nationwide Spanish Society of Internal Medicine (SEMI)-COVID-19 Registry. (3) Results: Of the total of 12,066 patients included in the study, most were males (7052, 58.5%) and Caucasian (10,635, 89.5%), with a mean age at diagnosis of 67 years (standard deviation (SD) 16). The main pre-admission comorbidities were arterial hypertension (6030, 50%), hyperlipidemia (4741, 39.4%) and diabetes mellitus (2309, 19.2%). The average number of days from COVID-19 symptom onset to hospital admission was 6.7 (SD 7). The triad of fever, cough, and dyspnea was present almost uniformly in all 4 clinical phenotypes identified by clustering. Cluster C1 (8737 patients, 72.4%) was the largest, and comprised patients with the triad alone. Cluster C2 (1196 patients, 9.9%) also presented with ageusia and anosmia; cluster C3 (880 patients, 7.3%) also had arthromyalgia, headache, and sore throat; and cluster C4 (1253 patients, 10.4%) also manifested with diarrhea, vomiting, and abdominal pain. Compared to each other, cluster C1 presented the highest in-hospital mortality (24.1% vs. 4.3% vs. 14.7% vs. 18.6%; p < 0.001). The multivariate study identified age, gender (male), body mass index (BMI), arterial hypertension, chronic obstructive pulmonary disease (COPD), ischemic cardiopathy, chronic heart failure, chronic hepatopathy, Charlson's index, heart rate and respiratory rate upon admission >20 bpm, lower PaO2/FiO2 at admission, higher levels of C-reactive protein (CRP) and lactate dehydrogenase (LDH), and the phenotypic cluster as independent factors for in-hospital death. (4) Conclusions: The present study identified 4 phenotypic clusters in patients with COVID-19 pneumonia, which predicted the in-hospital prognosis of clinical outcomes.
Project description:BackgroundNon-invasive oxygenation strategies have a prominent role in the treatment of acute hypoxemic respiratory failure during the coronavirus disease 2019 (COVID-19). While the efficacy of these therapies has been studied in hospitalized patients with COVID-19, the clinical outcomes associated with oxygen masks, high-flow oxygen therapy by nasal cannula and non-invasive mechanical ventilation in critically ill intensive care unit (ICU) patients remain unclear.MethodsIn this retrospective study, we used the best of nine covariate balancing algorithms on all baseline covariates in critically ill COVID-19 patients supported with > 10 L of supplemental oxygen at one of the 26 participating ICUs in Catalonia, Spain, between March 14 and April 15, 2020.ResultsOf the 1093 non-invasively oxygenated patients at ICU admission treated with one of the three stand-alone non-invasive oxygenation strategies, 897 (82%) required endotracheal intubation and 310 (28%) died during the ICU stay. High-flow oxygen therapy by nasal cannula (n = 439) and non-invasive mechanical ventilation (n = 101) were associated with a lower rate of endotracheal intubation (70% and 88%, respectively) than oxygen masks (n = 553 and 91% intubated), p < 0.001. Compared to oxygen masks, high-flow oxygen therapy by nasal cannula was associated with lower ICU mortality (hazard ratio 0.75 [95% CI 0.58-0.98), and the hazard ratio for ICU mortality was 1.21 [95% CI 0.80-1.83] for non-invasive mechanical ventilation.ConclusionIn critically ill COVID-19 ICU patients and, in the absence of conclusive data, high-flow oxygen therapy by nasal cannula may be the approach of choice as the primary non-invasive oxygenation support strategy.
Project description:Non-invasive respiratory support (NIRS) has increasingly been used in the management of COVID-19-associated acute respiratory failure, but questions remain about the utility, safety, and outcome benefit of NIRS strategies. We identified two randomised controlled trials and 83 observational studies, compromising 13 931 patients, that examined the effects of NIRS modalities-high-flow nasal oxygen, continuous positive airway pressure, and bilevel positive airway pressure-on patients with COVID-19. Of 5120 patients who were candidates for full treatment escalation, 1880 (37%) progressed to invasive mechanical ventilation and 3658 of 4669 (78%) survived to study end. Survival was 30% among the 1050 patients for whom NIRS was the stated ceiling of treatment. The two randomised controlled trials indicate superiority of non-invasive ventilation over high-flow nasal oxygen in reducing the need for intubation. Reported complication rates were low. Overall, the studies indicate that NIRS in patients with COVID-19 is safe, improves resource utilisation, and might be associated with better outcomes. To guide clinical decision making, prospective, randomised studies are needed to address timing of intervention, optimal use of NIRS modalities-alone or in combination-and validation of tools such as oxygenation indices, response to a trial of NIRS, and inflammatory markers as predictors of treatment success.
Project description:The significant impact of COVID-19 worldwide has made it necessary to develop tools to identify patients at high risk of severe disease and death. This work aims to validate the RIM Score-COVID in the SEMI-COVID-19 Registry. The RIM Score-COVID is a simple nomogram with high predictive capacity for in-hospital death due to COVID-19 designed using clinical and analytical parameters of patients diagnosed in the first wave of the pandemic. The nomogram uses five variables measured on arrival to the emergency department (ED): age, sex, oxygen saturation, C-reactive protein level, and neutrophil-to-platelet ratio. Validation was performed in the Spanish SEMI-COVID-19 Registry, which included consecutive patients hospitalized with confirmed COVID-19 in Spain. The cohort was divided into three time periods: T1 from February 1 to June 10, 2020 (first wave), T2 from June 11 to December 31, 2020 (second wave, pre-vaccination period), and T3 from January 1 to December 5, 2021 (vaccination period). The model's accuracy in predicting in-hospital COVID-19 mortality was assessed using the area under the receiver operating characteristics curve (AUROC). Clinical and laboratory data from 22,566 patients were analyzed: 15,976 (70.7%) from T1, 4,233 (18.7%) from T2, and 2,357 from T3 (10.4%). AUROC of the RIM Score-COVID in the entire SEMI-COVID-19 Registry was 0.823 (95%CI 0.819-0.827) and was 0.834 (95%CI 0.830-0.839) in T1, 0.792 (95%CI 0.781-0.803) in T2, and 0.799 (95%CI 0.785-0.813) in T3. The RIM Score-COVID is a simple, easy-to-use method for predicting in-hospital COVID-19 mortality that uses parameters measured in most EDs. This tool showed good predictive ability in successive disease waves.