Unknown

Dataset Information

0

An automated framework for image classification and segmentation of fetal ultrasound images for gestational age estimation.


ABSTRACT: Accurate assessment of fetal gestational age (GA) is critical to the clinical management of pregnancy. Industrialized countries rely upon obstetric ultrasound (US) to make this estimate. In low- and middle- income countries, automatic measurement of fetal structures using a low-cost obstetric US may assist in establishing GA without the need for skilled sonographers. In this report, we leverage a large database of obstetric US images acquired, stored and annotated by expert sonographers to train algorithms to classify, segment, and measure several fetal structures: biparietal diameter (BPD), head circumference (HC), crown rump length (CRL), abdominal circumference (AC), and femur length (FL). We present a technique for generating raw images suitable for model training by removing caliper and text annotation and describe a fully automated pipeline for image classification, segmentation, and structure measurement to estimate the GA. The resulting framework achieves an average accuracy of 93% in classification tasks, a mean Intersection over Union accuracy of 0.91 during segmentation tasks, and a mean measurement error of 1.89 centimeters, finally leading to a 1.4 day mean average error in the predicted GA compared to expert sonographer GA estimate using the Hadlock equation.

SUBMITTER: Prieto JC 

PROVIDER: S-EPMC8086527 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2011-11-23 | E-GEOD-33899 | biostudies-arrayexpress
2011-11-23 | GSE33899 | GEO
| S-EPMC6107118 | biostudies-literature
| S-EPMC3806831 | biostudies-literature
| S-EPMC8523410 | biostudies-literature
| S-EPMC9117994 | biostudies-literature
| S-EPMC4761989 | biostudies-other
| S-EPMC7103783 | biostudies-literature
| S-EPMC10795456 | biostudies-literature
| S-EPMC10498265 | biostudies-literature