Unknown

Dataset Information

0

Essential histone chaperones collaborate to regulate transcription and chromatin integrity.


ABSTRACT: Histone chaperones are critical for controlling chromatin integrity during transcription, DNA replication, and DNA repair. Three conserved and essential chaperones, Spt6, Spn1/Iws1, and FACT, associate with elongating RNA polymerase II and interact with each other physically and/or functionally; however, there is little understanding of their individual functions or their relationships with each other. In this study, we selected for suppressors of a temperature-sensitive spt6 mutation that disrupts the Spt6-Spn1 physical interaction and that also causes both transcription and chromatin defects. This selection identified novel mutations in FACT. Surprisingly, suppression by FACT did not restore the Spt6-Spn1 interaction, based on coimmunoprecipitation, ChIP, and mass spectrometry experiments. Furthermore, suppression by FACT bypassed the complete loss of Spn1. Interestingly, the FACT suppressor mutations cluster along the FACT-nucleosome interface, suggesting that they alter FACT-nucleosome interactions. In agreement with this observation, we showed that the spt6 mutation that disrupts the Spt6-Spn1 interaction caused an elevated level of FACT association with chromatin, while the FACT suppressors reduced the level of FACT-chromatin association, thereby restoring a normal Spt6-FACT balance on chromatin. Taken together, these studies reveal previously unknown regulation between histone chaperones that is critical for their essential in vivo functions.

SUBMITTER: Viktorovskaya O 

PROVIDER: S-EPMC8091981 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2020-11-05 | GSE160821 | GEO
| PRJNA674587 | ENA
| S-EPMC2063486 | biostudies-literature
| S-EPMC4649633 | biostudies-literature
| S-EPMC10899632 | biostudies-literature
| S-EPMC7337902 | biostudies-literature
| S-EPMC6757361 | biostudies-literature
| S-EPMC4168335 | biostudies-literature
| S-EPMC5623858 | biostudies-literature
| S-EPMC9467567 | biostudies-literature