Ultrafast multiplexed detection of SARS-CoV-2 RNA using a rapid droplet digital PCR system.
Ontology highlight
ABSTRACT: We report the first combination of droplet digital and rapid PCR techniques for efficient, accurate, and quantitative detection of SARS-CoV-2 RNA. The presented rapid digital PCR system simultaneously detects two specific targets (ORF1ab and N genes) and one reference gene (RNase P) with a single PCR thermal cycling period around 7 s and the total running time less than 5 min. A clear positive signal could be identified within 115 s via the rapid digital RT-PCR, suggesting its efficiency for the end-point detection. In addition, benchmark tests with serial diluted reference samples of SARS-CoV-2 RNA reveal the excellent accuracy of our system (R2>0.99). More importantly, the rapid digital PCR system gives consistent and accurate detection of low-concentration reference samples, whereas qPCR yields Ct values with significant variations that could lead to false-negative results. Finally, we apply the rapid digital PCR system to analyze clinical samples with both positive and control cases, where results are consistent with qPCR test outcomes. By providing similar accuracy with qPCR while minimizing the detection time-consuming and the false-negative tendency, the presented rapid digital PCR system represents a promising improvement on the rapid diagnosis of COVID-19.
SUBMITTER: Yin H
PROVIDER: S-EPMC8093165 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA