Project description:Preimplantation genetic testing for aneuploidies (PGT-A) is widely used in women of advanced maternal age (AMA). However, the effectiveness remains controversial. We conducted a comprehensive literature review comparing outcomes of IVF with or without PGT-A in women of AMA in PubMed, Embase, and the Cochrane Central Register of Controlled Trials in January 2021. All included trials met the criteria that constituted a randomized controlled trial for PGT-A involving women of AMA (≥35 years). Reviews, conference abstracts, and observational studies were excluded. The primary outcome was the live birth rate in included random control trials (RCTs). Nine randomized controlled trials met our inclusion criteria. For techniques of genetic analysis, three trials (270 events) performed with comprehensive chromosomal screening showed that the live birth rate was significantly higher in the women randomized to IVF/ICSI with PGT-A (RR = 1.30, 95% CI 1.03-1.65), which was not observed in six trials used with FISH as well as all nine trials. For different stages of embryo biopsy, only the subgroup of blastocyst biopsy showed a higher live birth rate in women with PGT-A (RR = 1.36, 95% CI 1.04-1.79). The application of comprehensive chromosome screening showed a beneficial effect of PGT-A in women of AMA compared with FISH. Moreover, blastocyst biopsy seemed to be associated with a better outcome than polar body biopsy and cleavage-stage biopsy.
Project description:BackgroundThe high incidence of aneuploidy in early human development, arising either from errors in meiosis or postzygotic mitosis, is the primary cause of pregnancy loss, miscarriage, and stillbirth following natural conception as well as in vitro fertilization (IVF). Preimplantation genetic testing for aneuploidy (PGT-A) has confirmed the prevalence of meiotic and mitotic aneuploidies among blastocyst-stage IVF embryos that are candidates for transfer. However, only about half of normally fertilized embryos develop to the blastocyst stage in vitro, while the others arrest at cleavage to late morula or early blastocyst stages.MethodsTo achieve a more complete view of the impacts of aneuploidy, we applied low-coverage sequencing-based PGT-A to a large series (n = 909) of arrested embryos and trophectoderm biopsies. We then correlated observed aneuploidies with abnormalities of the first two cleavage divisions using time-lapse imaging (n = 843).ResultsThe combined incidence of meiotic and mitotic aneuploidies was strongly associated with blastocyst morphological grading, with the proportion ranging from 20 to 90% for the highest to lowest grades, respectively. In contrast, the incidence of aneuploidy among arrested embryos was exceptionally high (94%), dominated by mitotic aneuploidies affecting multiple chromosomes. In turn, these mitotic aneuploidies were strongly associated with abnormal cleavage divisions, such that 51% of abnormally dividing embryos possessed mitotic aneuploidies compared to only 23% of normally dividing embryos.ConclusionsWe conclude that the combination of meiotic and mitotic aneuploidies drives arrest of human embryos in vitro, as development increasingly relies on embryonic gene expression at the blastocyst stage.
Project description:In different species, embryonic aneuploidies and genome-wide errors are a major cause of developmental failure. The increasing number of equine embryos being produced worldwide provides the opportunity to characterize and rank or select embryos based on their genetic profile prior to transfer. Here, we explored the possibility of generic, genome-wide preimplantation genetic testing concurrently for aneuploidies (PGT-A) and monogenic (PGT-M) traits and diseases in the horse, meanwhile assessing the incidence and spectrum of chromosomal and genome-wide errors in in vitro-produced equine embryos. To this end, over 70,000 single nucleotide polymorphism (SNP) positions were genotyped in 14 trophectoderm biopsies and corresponding biopsied blastocysts, and in 26 individual blastomeres from six arrested cleavage-stage embryos. Subsequently, concurrent genome-wide copy number detection and haplotyping by haplarithmisis was performed and the presence of aneuploidies and genome-wide errors and the inherited parental haplotypes for four common disease-associated genes with high carrier frequency in different horse breeds (GBE1, PLOD1, B3GALNT2, MUTYH), and for one color coat-associated gene (STX17) were compared in biopsy-blastocyst combinations. The euploid (n = 12) or fully aneuploid (n = 2) state and the inherited parental haplotypes for 42/45 loci of interest of the biopsied blastocysts were predicted by the biopsy samples in all successfully analyzed biopsy-blastocyst combinations (n = 9). Two biopsies showed a loss of maternal chromosome 28 and 31, respectively, which were confirmed in the corresponding blastocysts. In one of those biopsies, additional complex aneuploidies not present in the blastocyst were found. Five out of six arrested embryos contained chromosomal and/or genome-wide errors in most of their blastomeres, demonstrating their contribution to equine embryonic arrest in vitro. The application of the described PGT strategy would allow to select equine embryos devoid of genetic errors and pathogenetic variants, and with the variants of interest, which will improve foaling rate and horse quality. We believe this approach will be a gamechanger in horse breeding.
Project description:BACKGROUND:Preimplantation genetic testing (PGT) is widely used today in in-vitro fertilization (IVF) centers over the world for selecting euploid embryos for transfer and to improve clinical outcomes in terms of embryo implantation, clinical pregnancy, and live birth rates. METHODS:We report the current knowledge concerning these procedures and the results from different clinical indications in which PGT is commonly applied. RESULTS:This paper illustrates different molecular techniques used for this purpose and the clinical significance of the different oocyte and embryo stage (polar bodies, cleavage embryo, and blastocyst) at which it is possible to perform sampling biopsies for PGT. Finally, genetic origin and clinical significance of embryo mosaicism are illustrated. CONCLUSIONS:The preimplantation genetic testing is a valid technique to evaluated embryo euploidy and mosaicism before transfer.
Project description:Background and objectivesA genetic cause can be identified for an increasing number of pediatric and adult-onset kidney diseases. Preimplantation genetic testing (formerly known as preimplantation genetic diagnostics) is a reproductive technology that helps prospective parents to prevent passing on (a) disease-causing mutation(s) to their offspring. Here, we provide a clinical overview of 25 years of preimplantation genetic testing for monogenic kidney disease in The Netherlands.Design, setting, participants, & measurementsThis is a retrospective cohort study of couples counseled on preimplantation genetic testing for monogenic kidney disease in the national preimplantation genetic testing expert center (Maastricht University Medical Center+) from January 1995 to June 2019. Statistical analysis was performed through chi-squared tests.ResultsIn total, 98 couples were counseled regarding preimplantation genetic testing, of whom 53% opted for preimplantation genetic testing. The most frequent indications for referral were autosomal dominant polycystic kidney disease (38%), Alport syndrome (26%), and autosomal recessive polycystic kidney disease (9%). Of couples with at least one preimplantation genetic testing cycle with oocyte retrieval, 65% experienced one or more live births of an unaffected child. Of couples counseled, 38% declined preimplantation genetic testing for various personal and technical reasons.ConclusionsReferrals, including for adult-onset disease, have increased steadily over the past decade. Though some couples decline preimplantation genetic testing, in the couples who proceed with at least one preimplantation genetic testing cycle, almost two thirds experienced at least one live birth rate.
Project description:PurposeTo evaluate the use of preimplantation genetic testing (PGT) and live birth rates (LBR) in the USA from 2014 to 2017 and to understand how PGT is being used at a clinic and state level.MethodsThis study accessed SART data for 2014 to 2017 to determine LBR and the CDC for years 2016 and 2017 to identify PGT usage. Primary cycles included only the first embryo transfer within 1 year of an oocyte retrieval; subsequent cycles included transfers occurring after the first transfer or beyond 1 year of oocyte retrieval.ResultsIn the SART data, the number of primary PGT cycles showed a significant monotonic annual increase from 18,805 in 2014 to 54,442 in 2017 (P = 0.042) and subsequent PGT cycles in these years increased from 2946 to 14,361 (P = 0.01). There was a significant difference in primary PGT cycle use by age, where younger women had a greater percentage of PGT treatment cycles than older women. In both PGT and non-PGT cycles, the LBR per oocyte retrieval decreased significantly from 2014 to 2017 (P<0001) and younger women had a significantly higher LBR per oocyte retrieval compared to older women (P < 0.001). The CDC data revealed that in 2016, just 53 (11.4%) clinics used PGT for more than 50% of their cycles, which increased to 99 (21.4%) clinics in 2017 (P< 0.001).ConclusionsA growing number of US clinics are offering PGT to their patients. These findings support re-evaluation of the application for PGT.
Project description:In addition to the potential for multiple pregnancy, spontaneous conception during in vitro fertilization (IVF) can lead to undesired genetic outcomes. We present a case of a patient undergoing IVF with the intention of subsequent frozen embryo transfer after preimplantation genetic testing (PGT). Unprotected intercourse 6 days prior to egg retrieval resulted in a spontaneous pregnancy before the opportunity for embryo transfer. This case report highlights that spontaneous conception during IVF compromises the ability to transfer embryos that are euploid, unaffected by single gene disorders, or intended for gender balancing within a family when desired.
Project description:Uterus transplantation is an emerging treatment for uterine factor infertility. In vitro fertilization with cryopreservation of embryos prior is required before a patient can be listed for transplant. Whether or not to perform universal preimplantation genetic testing for aneuploidy should be addressed by centers considering a uterus transplant program. The advantages and disadvantages of preimplantation genetic testing for aneuploidy in this unique population are presented. The available literature is reviewed to determine the utility of preimplantation genetic testing for aneuploidy in uterus transplantation protocols. Theoretical benefits of preimplantation genetic testing for aneuploidy include decreased time to pregnancy in a population that benefits from minimization of exposure to immunosuppressive agents and decreased chance of spontaneous abortion requiring a dilation and curettage. Drawbacks include increased cost per in vitro fertilization cycle, increased number of required in vitro fertilization cycles to achieve a suitable number of embryos prior to listing for transplant, and a questionable benefit to live birth rate in younger patients. Thoughtful consideration of whether or not to use preimplantation genetic testing for aneuploidy is necessary in uterus transplant trials. Age is likely a primary factor that can be useful in determining which uterus transplant recipients benefit from preimplantation genetic testing for aneuploidy.