Detecting pathological features and predicting fracture risk from dual-energy X-ray absorptiometry images using deep learning.
Ontology highlight
ABSTRACT: Dual-energy X-ray absorptiometry (DXA) is the gold standard imaging method for diagnosing osteoporosis in clinical practice. The DXA images are commonly used to estimate a numerical value for bone mineral density (BMD), which decreases in osteoporosis. Low BMD is a known risk factor for osteoporotic fractures. In this study, we used deep learning to identify lumbar scoliosis and structural abnormalities that potentially affect BMD but are often neglected in lumbar spine DXA analysis. In addition, we tested the approach's ability to predict fractures using only DXA images. A dataset of 2949 images gathered by Kuopio Osteoporosis Risk Factor and Prevention Study was used to train a convolutional neural network (CNN) for classification. The model was able to classify scoliosis with an AUC of 0.96 and structural abnormalities causing unreliable BMD measurement with an AUC of 0.91. It predicted fractures occurring within 5 years from the lumbar spine DXA scan with an AUC of 0.63, meeting the predictive performance of combined BMD measurements from the lumbar spine and hip. In an independent test set of 574 clinical patients, AUC for lumbar scoliosis was 0.93 and AUC for unreliable BMD measurements was 0.94. In each classification task, neural network visualizations indicated the model's predictive strategy. We conclude that deep learning could complement the well established DXA method for osteoporosis diagnostics by analyzing incidental findings and image reliability, and improve its predictive ability in the future.
SUBMITTER: Nissinen T
PROVIDER: S-EPMC8102403 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA