Project description:Convolutional neural networks (CNNs) are increasingly used to model human vision due to their high object categorization capabilities and general correspondence with human brain responses. Here we evaluate the performance of 14 different CNNs compared with human fMRI responses to natural and artificial images using representational similarity analysis. Despite the presence of some CNN-brain correspondence and CNNs' impressive ability to fully capture lower level visual representation of real-world objects, we show that CNNs do not fully capture higher level visual representations of real-world objects, nor those of artificial objects, either at lower or higher levels of visual representations. The latter is particularly critical, as the processing of both real-world and artificial visual stimuli engages the same neural circuits. We report similar results regardless of differences in CNN architecture, training, or the presence of recurrent processing. This indicates some fundamental differences exist in how the brain and CNNs represent visual information.
Project description:Traditional models of retinal system identification analyze the neural response to artificial stimuli using models consisting of predefined components. The model design is limited to prior knowledge, and the artificial stimuli are too simple to be compared with stimuli processed by the retina. To fill in this gap with an explainable model that reveals how a population of neurons work together to encode the larger field of natural scenes, here we used a deep-learning model for identifying the computational elements of the retinal circuit that contribute to learning the dynamics of natural scenes. Experimental results verify that the recurrent connection plays a key role in encoding complex dynamic visual scenes while learning biological computational underpinnings of the retinal circuit. In addition, the proposed models reveal both the shapes and the locations of the spatiotemporal receptive fields of ganglion cells.
Project description:Introduction:Deep learning neural networks are especially potent at dealing with structured data, such as images and volumes. Both modified LiviaNET and HyperDense-Net performed well at a prior competition segmenting 6-month-old infant magnetic resonance images, but neonatal cerebral tissue type identification is challenging given its uniquely inverted tissue contrasts. The current study aims to evaluate the two architectures to segment neonatal brain tissue types at term equivalent age. Methods:Both networks were retrained over 24 pairs of neonatal T1 and T2 data from the Developing Human Connectome Project public data set and validated on another eight pairs against ground truth. We then reported the best-performing model from training and its performance by computing the Dice similarity coefficient (DSC) for each tissue type against eight test subjects. Results:During the testing phase, among the segmentation approaches tested, the dual-modality HyperDense-Net achieved the best statistically significantly test mean DSC values, obtaining 0.94/0.95/0.92 for the tissue types and took 80 h to train and 10 min to segment, including preprocessing. The single-modality LiviaNET was better at processing T2-weighted images than processing T1-weighted images across all tissue types, achieving mean DSC values of 0.90/0.90/0.88 for gray matter, white matter, and cerebrospinal fluid, respectively, while requiring 30 h to train and 8 min to segment each brain, including preprocessing. Discussion:Our evaluation demonstrates that both neural networks can segment neonatal brains, achieving previously reported performance. Both networks will be continuously retrained over an increasingly larger repertoire of neonatal brain data and be made available through the Canadian Neonatal Brain Platform to better serve the neonatal brain imaging research community.
Project description:Dedicated brain positron emission tomography (PET) devices can provide higher-resolution images with much lower doses compared to conventional whole-body PET systems, which is important to support PET neuroimaging and particularly useful for the diagnosis of neurodegenerative diseases. However, when a dedicated brain PET scanner does not come with a combined CT or transmission source, there is no direct solution for accurate attenuation and scatter correction, both of which are critical for quantitative PET. To address this problem, we propose joint attenuation and scatter correction (ASC) in image space for non-corrected PET (PETNC) using deep convolutional neural networks (DCNNs). This approach is a one-step process, distinct from conventional methods that rely on generating attenuation maps first that are then applied to iterative scatter simulation in sinogram space. For training and validation, time-of-flight PET/MR scans and additional helical CTs were performed for 35 subjects (25/10 split for training and test dataset). A DCNN model was proposed and trained to convert PETNC to DCNN-based ASC PET (PETDCNN) directly in image space. For quantitative evaluation, uptake differences between PETDCNN and reference CT-based ASC PET (PETCT-ASC) were computed for 116 automated anatomical labels (AALs) across 10 test subjects (1160 regions in total). MR-based ASC PET (PETMR-ASC), a current clinical protocol in PET/MR imaging, was another reference for comparison. Statistical significance was assessed using a paired t test. The performance of PETDCNN was comparable to that of PETMR-ASC, in comparison to reference PETCT-ASC. The mean SUV differences (mean ± SD) from PETCT-ASC were 4.0% ± 15.4% (P < 0.001) and -4.2% ± 4.3% (P < 0.001) for PETDCNN and PETMR-ASC, respectively. The overall larger variation of PETDCNN (15.4%) was prone to the subject with the highest mean difference (48.5% ± 10.4%). The mean difference of PETDCNN excluding the subject was substantially improved to -0.8% ± 5.2% (P < 0.001), which was lower than that of PETMR-ASC (-5.07% ± 3.60%, P < 0.001). In conclusion, we demonstrated the feasibility of directly producing PET images corrected for attenuation and scatter using a DCNN (PETDCNN) from PETNC in image space without requiring conventional attenuation map generation and time-consuming scatter correction. Additionally, our DCNN-based method provides a possible alternative to MR-ASC for simultaneous PET/MRI.
Project description:Deep Convolutional Neural Networks (DCNNs) were originally inspired by principles of biological vision, have evolved into best current computational models of object recognition, and consequently indicate strong architectural and functional parallelism with the ventral visual pathway throughout comparisons with neuroimaging and neural time series data. As recent advances in deep learning seem to decrease this similarity, computational neuroscience is challenged to reverse-engineer the biological plausibility to obtain useful models. While previous studies have shown that biologically inspired architectures are able to amplify the human-likeness of the models, in this study, we investigate a purely data-driven approach. We use human eye tracking data to directly modify training examples and thereby guide the models' visual attention during object recognition in natural images either toward or away from the focus of human fixations. We compare and validate different manipulation types (i.e., standard, human-like, and non-human-like attention) through GradCAM saliency maps against human participant eye tracking data. Our results demonstrate that the proposed guided focus manipulation works as intended in the negative direction and non-human-like models focus on significantly dissimilar image parts compared to humans. The observed effects were highly category-specific, enhanced by animacy and face presence, developed only after feedforward processing was completed, and indicated a strong influence on face detection. With this approach, however, no significantly increased human-likeness was found. Possible applications of overt visual attention in DCNNs and further implications for theories of face detection are discussed.
Project description:Quantifying the degree of atrophy is done clinically by neuroradiologists following established visual rating scales. For these assessments to be reliable the rater requires substantial training and experience, and even then the rating agreement between two radiologists is not perfect. We have developed a model we call AVRA (Automatic Visual Ratings of Atrophy) based on machine learning methods and trained on 2350 visual ratings made by an experienced neuroradiologist. It provides fast and automatic ratings for Scheltens' scale of medial temporal atrophy (MTA), the frontal subscale of Pasquier's Global Cortical Atrophy (GCA-F) scale, and Koedam's scale of Posterior Atrophy (PA). We demonstrate substantial inter-rater agreement between AVRA's and a neuroradiologist ratings with Cohen's weighted kappa values of ?w?=?0.74/0.72 (MTA left/right), ?w?=?0.62 (GCA-F) and ?w?=?0.74 (PA). We conclude that automatic visual ratings of atrophy can potentially have great scientific value, and aim to present AVRA as a freely available toolbox.
Project description:Despite the remarkable similarities between convolutional neural networks (CNN) and the human brain, CNNs still fall behind humans in many visual tasks, indicating that there still exist considerable differences between the two systems. Here, we leverage adversarial noise (AN) and adversarial interference (AI) images to quantify the consistency between neural representations and perceptual outcomes in the two systems. Humans can successfully recognize AI images as the same categories as their corresponding regular images but perceive AN images as meaningless noise. In contrast, CNNs can recognize AN images similar as corresponding regular images but classify AI images into wrong categories with surprisingly high confidence. We use functional magnetic resonance imaging to measure brain activity evoked by regular and adversarial images in the human brain, and compare it to the activity of artificial neurons in a prototypical CNN-AlexNet. In the human brain, we find that the representational similarity between regular and adversarial images largely echoes their perceptual similarity in all early visual areas. In AlexNet, however, the neural representations of adversarial images are inconsistent with network outputs in all intermediate processing layers, providing no neural foundations for the similarities at the perceptual level. Furthermore, we show that voxel-encoding models trained on regular images can successfully generalize to the neural responses to AI images but not AN images. These remarkable differences between the human brain and AlexNet in representation-perception association suggest that future CNNs should emulate both behavior and the internal neural presentations of the human brain.
Project description:Recent advances in the field of artificial intelligence have revealed principles about neural processing, in particular about vision. Previous work demonstrated a direct correspondence between the hierarchy of the human visual areas and layers of deep convolutional neural networks (DCNN) trained on visual object recognition. We use DCNN to investigate which frequency bands correlate with feature transformations of increasing complexity along the ventral visual pathway. By capitalizing on intracranial depth recordings from 100 patients we assess the alignment between the DCNN and signals at different frequency bands. We find that gamma activity (30-70?Hz) matches the increasing complexity of visual feature representations in DCNN. These findings show that the activity of the DCNN captures the essential characteristics of biological object recognition not only in space and time, but also in the frequency domain. These results demonstrate the potential that artificial intelligence algorithms have in advancing our understanding of the brain.