Project description:ACE2 on epithelial cells is the SARS-CoV-2 entry receptor. Single-cell RNA-sequencing data derived from two COVID-19 cohorts revealed that MAP4K3/GLK-positive epithelial cells were increased in patients. SARS-CoV-2-induced GLK overexpression in epithelial cells correlated with COVID-19 severity and vesicle secretion. GLK overexpression induced the epithelial cell-derived exosomes containing ACE2; the GLK-induced exosomes transported ACE2 proteins to recipient cells, facilitating pseudovirus infection. Consistently, ACE2 proteins were increased in the serum exosomes from another COVID-19 cohort. Remarkably, SARS-CoV-2 spike protein stimulated GLK, and GLK stabilized ACE2 in epithelial cells. Mechanistically, GLK phosphorylated ACE2 at two serine residues (Ser776, Ser783), leading to dissociation of ACE2 from its E3 ligase UBR4. Reduction of UBR4-induced Lys48-linked ubiquitination at three lysine residues (Lys26, Lys112, Lys114) of ACE2 prevented its degradation. Furthermore, SARS-CoV-2 pseudovirus or live virus infection in humanized ACE2 mice induced GLK and ACE2 protein levels, as well as ACE2-containing exosomes. Collectively, ACE2 stabilization by SARS-CoV-2-induced MAP4K3/GLK may contribute to the pathogenesis of COVID-19.
Project description:Bat sarbecovirus BANAL-236 is highly related to SARS-CoV-2 and infects human cells, albeit lacking the furin cleavage site in its spike protein. BANAL-236 replicates efficiently and pauci-symptomatically in humanized mice and in macaques, where its tropism is enteric, strongly differing from that of SARS-CoV-2. BANAL-236 infection leads to protection against superinfection by a virulent strain. We find no evidence of antibodies recognizing bat sarbecoviruses in populations in close contact with bats in which the virus was identified, indicating that such spillover infections, if they occur, are rare. Six passages in humanized mice or in human intestinal cells, mimicking putative early spillover events, select adaptive mutations without appearance of a furin cleavage site and no change in virulence. Therefore, acquisition of a furin site in the spike protein is likely a pre-spillover event that did not occur upon replication of a SARS-CoV-2-like bat virus in humans or other animals. Other hypotheses regarding the origin of the SARS-CoV-2 should therefore be evaluated, including the presence of sarbecoviruses carrying a spike with a furin cleavage site in bats.
Project description:Molecular diagnostic testing has played a critical role in the global response to the novel Coronavirus disease (COVID-19) pandemic, since its first outbreak in late 2019. At the inception of the COVID-19 pandemic, nasopharyngeal swab sample analysis for COVID-19 diagnosis using the real-time polymerase chain reaction (RT-PCR) technique was the most widely used. However, due to the high cost and difficulty of sample collection, the number of available sample types for COVID-19 diagnosis is rapidly increasing, as is the COVID-19 diagnostic literature. The use of nasal swabs, saliva, and oral fluids as viable sample options for the effective detection of SARS-CoV-2 has been implemented successfully in different settings since 2020. These alternative sample type provides a plethora of advantages including decreasing the high exposure risk to frontline workers, enhancing the chances of home self-sampling, reducing the cost, and significantly increasing testing capacity. This study sought to ascertain the effectiveness of Saliva samples as an alternative for COVID-19 diagnosis in Nigeria. Demographic data, paired samples of Nasopharyngeal Swab and Drooling Saliva were obtained from 309 consenting individuals aged 8-83 years presenting for COVID-19 testing. All samples were simultaneously assayed for the detection of SARS-CoV-2 RdRp, N, and E genes using the GeneFinder™ COVID-19 Plus RT-PCR test kit. Out of 309 participants, only 299 with valid RT-PCR results comprising 159 (53.2%) males and 140 (46.8%) females were analyzed in this study using the R Statistical package. Among the 299 samples analyzed, 39 (13.0%) had SARS-CoV-2 detected in at least one specimen type. Both swabs and saliva were positive in 20 (51.3%) participants. Ten participants (25.6%) had swab positive/saliva-negative results and 9 participants (23.1%) had saliva positive/swab-negative results. The percentage of positive and negative agreement of the saliva samples with the nasopharyngeal swab were 67% and 97% respectively with positive and negative predictive values as 69% and 96% respectively. The findings indicate that drooling saliva samples have good and comparable diagnostic accuracy to the nasopharyngeal swabs with moderate sensitivities and high specificities.
Project description:The current diagnostic standard for coronavirus disease 2019 (COVID-19) is reverse transcriptase-polymerase chain reaction (RT-PCR) testing with nasopharyngeal (NP) swabs. The invasiveness and need for trained personnel make the NP technique unsuited for repeated community-based mass screening. We developed a technique to collect saliva in a simple and easy way with the sponges that are usually used for tamponade of epistaxis. This study was carried out to validate the clinical performance of oral sponge (OS) sampling for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing. Over a period of 22 weeks, we collected prospectively 409 paired NP and OS samples from consecutive subjects presenting to a public community-based free screening centre. Subjects were referred by their attending physician because of recent COVID-19 symptoms (n = 147) or by the contact tracing staff of the French public health insurance because they were considered as close contacts of a laboratory-confirmed COVID-19 case (n = 262). In symptomatic subjects, RT-PCR SARS-CoV-2 testing with OS showed a 96.5% (95% CI: 89.6-94.8) concordance with NP testing, and a 93.2% (95% CI: 89.1-97.3) sensitivity when using the IdyllaTM platform and a sensitivity of 76.3% (95% CI: 69.4-83.2) on the Synlab Barla laboratory platform. In close contacts the NP-OS concordance (93.8%, 95% CI: 90.9-96.7) and OS sensitivity (71.9%, 95% CI: 66.5-77.3) were slightly lower. These results strongly suggest that OS testing is a straightforward, low-cost and high-throughput sampling method that can be used for frequent RT-PCR testing of COVID-19 patients and mass screening of populations.
Project description:PurposeReal-time polymerase chain reaction (RT-PCR) detection of severe acute respiratory syndrome coronavirus (SARS-CoV-2) is required for diagnosis of coronavirus disease 2019 (COVID-19). Sensitivity of RT-PCR nasopharyngeal (NP) testing is presumed to be high, but there is no gold standard against which this has been determined. The objective was to determine whether lower respiratory tract infection (LRTI), detected in bronchoalveolar lavage fluid (BALF), occurs in the absence of upper respiratory tract infection with clinical testing of both specimen types.MethodsBetween March 26, 2020 and April 17, 2020 at the University of Washington Medical Center all patients with BALF specimens clinically tested for SARS-CoV-2 were identified. We assessed the proportion of patients with positive RT-PCR for SARS-CoV-2 in BALF after negative NP testing. We describe 3 cases with positive testing in BALF.ResultsAmong 16 patients with BALF samples, 3 cases (19%) had SARS-CoV-2 detected in BALF. In Case 1, negative NP testing occurred early in the infection and respiratory symptoms may have been missed due to neurologic injury. In Case 2, outpatient diagnosis was aspiration pneumonia, but clinical suspicion remained high for COVID-19 at hospitalization based on epidemiological and clinical features. All 3 cases involved older adults (age >65 years), one of whom was immunosuppressed in the setting of lung transplantation (Case 3).ConclusionsThese data demonstrate that SARS-CoV-2 LRTI occurs in the presence of negative NP testing. NP testing may underestimate the prevalence of COVID-19 and has implications for spread of SARS-CoV2 in the community and healthcare setting.
Project description:ScopeThe objective of these guidelines is to identify the most appropriate diagnostic test and/or diagnostic approach for SARS-CoV-2. The recommendations are intended to provide guidance to clinicians, clinical microbiologists, other health care personnel, and decision makers.MethodsAn ESCMID COVID-19 guidelines task force was established by the ESCMID Executive Committee. A small group was established, half appointed by the chair and the remaining selected with an open call. Each panel met virtually once a week. For all decisions, a simple majority vote was used. A list of clinical questions using the PICO (population, intervention, comparison, outcome) format was developed at the beginning of the process. For each PICO, two panel members performed a literature search focusing on systematic reviews, with a third panellist involved in case of inconsistent results. Quality of evidence assessment was based on the GRADE-ADOLOPMENT (Grading of Recommendations Assessment, Development and Evaluation - adoption, adaptation, and de novo development of recommendations) approach.RecommendationsA total of 43 PICO questions were selected that involve the following types of populations: (a) patients with signs and symptoms of COVID-19; (b) travellers, healthcare workers, and other individuals at risk for exposure to SARS-CoV-2; (c) asymptomatic individuals, and (d) close contacts of patients infected with SARS-CoV-2. The type of diagnostic test (commercial rapid nucleic acid amplification tests and rapid antigen detection), biomaterial, time since onset of symptoms/contact with an infectious case, age, disease severity, and risk of developing severe disease are also taken into consideration.