Novel nanopolymer RNA therapeutics normalize human diabetic corneal wound healing and epithelial stem cells.
Ontology highlight
ABSTRACT: Human diabetic corneas develop delayed wound healing, epithelial stem cell dysfunction, recurrent erosions, and keratitis. Adenoviral gene therapy modulating c-Met, cathepsin F and MMP-10 normalized wound healing and epithelial stem cells in organ-cultured diabetic corneas but showed toxicity in stem cell-enriched cultured limbal epithelial cells (LECs). For a safer treatment, we engineered a novel nanobiopolymer (NBC) that carried antisense oligonucleotide (AON) RNA therapeutics suppressing cathepsin F or MMP-10, and miR-409-3p that inhibits c-Met. NBC was internalized by LECs through transferrin receptor (TfR)-mediated endocytosis, inhibited cathepsin F or MMP-10 and upregulated c-Met. Non-toxic NBC modulating c-Met and cathepsin F accelerated wound healing in diabetic LECs and organ-cultured corneas vs. control NBC. NBC treatment normalized levels of stem cell markers (keratins 15 and 17, ABCG2, and ΔNp63), and signaling mediators (p-EGFR, p-Akt and p-p38). Non-toxic nano RNA therapeutics thus present a safe alternative to viral gene therapy for normalizing diabetic corneal cells.
SUBMITTER: Kramerov AA
PROVIDER: S-EPMC8107190 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA