Project description:BackgroundUnderstanding the genetic and environmental factors that structure plant microbiomes is necessary for leveraging these interactions to address critical needs in agriculture, conservation, and sustainability. Legumes, which form root nodule symbioses with nitrogen-fixing rhizobia, have served as model plants for understanding the genetics and evolution of beneficial plant-microbe interactions for decades, and thus have added value as models of plant-microbiome interactions. Here we use a common garden experiment with 16S rRNA gene amplicon and shotgun metagenomic sequencing to study the drivers of microbiome diversity and composition in three genotypes of the model legume Medicago truncatula grown in two native soil communities.ResultsBacterial diversity decreased between external (rhizosphere) and internal plant compartments (root endosphere, nodule endosphere, and leaf endosphere). Community composition was shaped by strong compartment × soil origin and compartment × plant genotype interactions, driven by significant soil origin effects in the rhizosphere and significant plant genotype effects in the root endosphere. Nevertheless, all compartments were dominated by Ensifer, the genus of rhizobia that forms root nodule symbiosis with M. truncatula, and additional shotgun metagenomic sequencing suggests that the nodulating Ensifer were not genetically distinguishable from those elsewhere in the plant. We also identify a handful of OTUs that are common in nodule tissues, which are likely colonized from the root endosphere.ConclusionsOur results demonstrate strong host filtering effects, with rhizospheres driven by soil origin and internal plant compartments driven by host genetics, and identify several key nodule-inhabiting taxa that coexist with rhizobia in the native range. Our results set the stage for future functional genetic experiments aimed at expanding our pairwise understanding of legume-rhizobium symbiosis toward a more mechanistic understanding of plant microbiomes. Video Abstract.
Project description:One of the major issues in healthcare today is antibiotic resistance. Antimicrobial peptides (AMPs), a subclass of host defense peptides, have been suggested as a viable solution for the multidrug resistance problem. Legume plants express more than 700 nodule-specific cysteine-rich (NCR) peptides. Three NCR peptides (NCR094, NCR888, and NCR992) were predicted to have antimicrobial activity using in silico AMP prediction programs. This study focused on investigating the roles of the NCRs in antimicrobial activity and antibiofilm activity, followed by in vitro toxicity profiling. Different variants were synthesized, i.e., mutated and truncated derivatives. The effect on the growth of Klebsiella pneumoniae and methicillin-resistant Staphylococcus aureus (MRSA) was monitored post-treatment, and survived cells were counted using an in vitro and ex vivo killing assay. The antibiofilm assay was conducted using subinhibitory concentrations of the NCRs and monitoring K. pneumoniae biomass, followed by crystal violet staining. The cytotoxicity profile was evaluated using erythrocyte hemolysis and leukemia (K562) cell line toxicity assays. Out of the NCRs, NCR094 and NCR992 displayed mainly in vitro and ex vivo bactericidal activity on K. pneumoniae. NCR094 wild type (WT) and NCR992 eradicated K. pneumoniae at different potency; NCR094 and NCR992 killed K. pneumoniae completely at 25 and 50 µM, respectively. However, both peptides in the wild type showed negligible bactericidal effect on MRSA in vitro and ex vivo. NCR094 and its derivatives relatively retained the antimicrobial activity on K. pneumoniae in vitro and ex vivo. NCR992 WT lost its antimicrobial activity on K. pneumoniae ex vivo, yet the different truncated and mutated variants retained some of the antimicrobial role ex vivo. All the different variants of NCR094 had no effect on MRSA in vitro and ex vivo. Similarly, NCR992's variants had a negligible bactericidal role on MRSA in vitro, yet the truncated variants had a significantly high bactericidal effect on MRSA ex vivo. NCR094.3 (cystine replacement variant) and NCR992.1 displayed significant antibiofilm activity more than 90%. NCR992.3 and NCR992.2 displayed more than 50% of antibiofilm activity. All the NCR094 forms had no toxicity, except NCR094.1 (49.38%, SD ± 3.46) and all NCR992 forms (63%-93%), which were above the cutoff (20%). Only NCR992.2 showed low toxicity on K562 (24.8%, SD ± 3.40), yet above the 20% cutoff. This study provided preliminary antimicrobial and safety data for the potential use of these peptides for therapeutical applications.IMPORTANCEThe discovery of new antibiotics is urgently needed, given the global expansion of antibiotic-resistant bacteria and the rising mortality rate. One of the initial lines of defense against microbial infections is antimicrobial peptides (AMPs). Plants can express hundreds of such AMPs as defensins and defensin-like peptides. The nodule-specific cysteine-rich (NCR) peptides are a class of defensin-like peptides that have evolved in rhizobial-legume symbioses. This study screened the antimicrobial activity of a subset of NCR sequences using online computational AMP prediction algorithms. Two novel NCRs, NCR094 and NCR992, with different variants were identified to exhibit antimicrobial activity with various potency on two problematic pathogens, K. pneumoniae and MRSA, using in vitro and ex vivo killing assays. Yet, one variant, NCR094.3, had no toxicity toward human cells and displayed antibiofilm activity, which make it a promising lead for antimicrobial drug development.
Project description:Verticillium wilt is a major threat to alfalfa (Medicago sativa) and many other crops. The model legume Medicago truncatula was used as a host for studying resistance and susceptibility to Verticillium albo-atrum. In addition to presenting well-established genetic resources, this wild plant species enables to investigate biodiversity of the response to the pathogen and putative crosstalk between disease and symbiosis. Symptom scoring after root inoculation and modelling of disease curves allowed assessing susceptibility levels in recombinant lines of three crosses between susceptible and resistant lines, in a core collection of 32 lines, and in mutants affected in symbiosis with rhizobia. A GFP-expressing V. albo-atrum strain was used to study colonization of susceptible plants. Symptoms and colonization pattern in infected M. truncatula plants were typical of Verticillium wilt. Three distinct major quantitative trait loci were identified using a multicross, multisite design, suggesting that simple genetic mechanisms appear to control Verticillium wilt resistance in M. truncatula lines A17 and DZA45.5. The disease functional parameters varied largely in lines of the core collection. This biodiversity with regard to disease response encourages the development of association genetics and ecological approaches. Several mutants of the resistant line, impaired in different steps of rhizobial symbiosis, were affected in their response to V. albo-atrum, which suggests that mechanisms involved in the establishment of symbiosis or disease might have some common regulatory control points.
Project description:BACKGROUND: Medicago truncatula Gaertn. (barrel medic) is cultivated as a pasture legume for its high protein content and ability to improve soils through nitrogen fixation. Toxic concentrations of the micronutrient Boron (B) in agricultural soils hamper the production of cereal and leguminous crops. In cereals, the genetic analysis of B tolerance has led to the development of molecular selection tools to introgress and maintain the B tolerance trait in breeding lines. There is a comparable need for selection tools in legumes that grow on these toxic soils, often in rotation with cereals. RESULTS: Genetic variation for B tolerance in Medicago truncatula was utilised to generate two F2 populations from crosses between tolerant and intolerant parents. Phenotyping under B stress revealed a close correlation between B tolerance and biomass production and a segregation ratio explained by a single dominant locus. M. truncatula homologues of the Arabidopsis major intrinsic protein (MIP) gene AtNIP5;1 and the efflux-type transporter gene AtBOR1, both known for B transport, were identified and nearby molecular markers screened across F2 lines to verify linkage with the B-tolerant phenotype. Most (95%) of the phenotypic variation could be explained by the SSR markers h2_6e22a and h2_21b19a, which flank a cluster of five predicted MIP genes on chromosome 4. Three CAPS markers (MtBtol-1,-2,-3) were developed to dissect the region further. Expression analysis of the five predicted MIPs indicated that only MtNIP3 was expressed when leaf tissue and roots were assessed. MtNIP3 showed low and equal expression in the roots of tolerant and intolerant lines but a 4-fold higher expression level in the leaves of B-tolerant cultivars. The expression profile correlates closely with the B concentration measured in the leaves and roots of tolerant and intolerant plants. Whereas no significant difference in B concentration exists between roots of tolerant and intolerant plants, the B concentration in the leaves of tolerant plants is less than half that of intolerant plants, which further supports MtNIP3 as the best candidate for the tolerance trait-defining gene in Medicago truncatula. CONCLUSION: The close linkage of the MtNIP3 locus to B toxicity tolerance provides a source of molecular selection tools to pasture breeding programs. The economical importance of the locus warrants further investigation of the individual members of the MIP gene cluster in other pasture and in grain legumes.
Project description:BACKGROUND: Medicago truncatula, a close relative of alfalfa, is a preeminent model for studying nitrogen fixation, symbiosis, and legume genomics. The Medicago sequencing project began in 2003 with the goal to decipher sequences originated from the euchromatic portion of the genome. The initial sequencing approach was based on a BAC tiling path, culminating in a BAC-based assembly (Mt3.5) as well as an in-depth analysis of the genome published in 2011. RESULTS: Here we describe a further improved and refined version of the M. truncatula genome (Mt4.0) based on de novo whole genome shotgun assembly of a majority of Illumina and 454 reads using ALLPATHS-LG. The ALLPATHS-LG scaffolds were anchored onto the pseudomolecules on the basis of alignments to both the optical map and the genotyping-by-sequencing (GBS) map. The Mt4.0 pseudomolecules encompass ~360 Mb of actual sequences spanning 390 Mb of which ~330 Mb align perfectly with the optical map, presenting a drastic improvement over the BAC-based Mt3.5 which only contained 70% sequences (~250 Mb) of the current version. Most of the sequences and genes that previously resided on the unanchored portion of Mt3.5 have now been incorporated into the Mt4.0 pseudomolecules, with the exception of ~28 Mb of unplaced sequences. With regard to gene annotation, the genome has been re-annotated through our gene prediction pipeline, which integrates EST, RNA-seq, protein and gene prediction evidences. A total of 50,894 genes (31,661 high confidence and 19,233 low confidence) are included in Mt4.0 which overlapped with ~82% of the gene loci annotated in Mt3.5. Of the remaining genes, 14% of the Mt3.5 genes have been deprecated to an "unsupported" status and 4% are absent from the Mt4.0 predictions. CONCLUSIONS: Mt4.0 and its associated resources, such as genome browsers, BLAST-able datasets and gene information pages, can be found on the JCVI Medicago web site (http://www.jcvi.org/medicago). The assembly and annotation has been deposited in GenBank (BioProject: PRJNA10791). The heavily curated chromosomal sequences and associated gene models of Medicago will serve as a better reference for legume biology and comparative genomics.
Project description:Cultivated legumes account for more than a quarter of primary crop production worldwide. The protein- and oil-rich seed of cultivated legumes provides around one-third of the protein in the average human diet, with soybeans (Glycine max (L.) Merr) being the single largest source of vegetable oil. Despite their critical importance to human and animal nutrition, we lack an understanding of how early seed development in legumes is orchestrated at the transcriptional level. We developed a method to isolate ovules from the model legume, Medicago truncatula Gaertn, at specific stages of embryogenesis, on the basis of flower and pod morphology. Using these isolated ovules we profiled the expression of candidate homeobox, AP2 domain and B3 domain-containing transcription factors. These genes were identified by available information and sequence homology, and five distinctive patterns of transcription were found that correlated with specific stages of early seed growth and development. Co-expression of some genes could be related to common regulatory sequences in the promoter or 3'-UTR regions. These expression patterns were also related to the expression of B3-domain transcription factors important in seed filling (MtFUS3-like and MtABI3-like). Localisation of gene expression by promoter-GUS fusions or in situ hybridisation aided understanding of the role of the transcription factors. This study provides a framework to enhance the understanding of the integrated transcriptional regulation of legume embryo growth and development and seed filling.
Project description:We report on a large-scale expressed sequence tag (EST) sequencing and analysis program aimed at characterizing the sets of genes expressed in roots of the model legume Medicago truncatula during interactions with either of two microsymbionts, the nitrogen-fixing bacterium Sinorhizobium meliloti or the arbuscular mycorrhizal fungus Glomus intraradices. We have designed specific tools for in silico analysis of EST data, in relation to chimeric cDNA detection, EST clustering, encoded protein prediction, and detection of differential expression. Our 21 473 5'- and 3'-ESTs could be grouped into 6359 EST clusters, corresponding to distinct virtual genes, along with 52 498 other M.truncatula ESTs available in the dbEST (NCBI) database that were recruited in the process. These clusters were manually annotated, using a specifically developed annotation interface. Analysis of EST cluster distribution in various M.truncatula cDNA libraries, supported by a refined R test to evaluate statistical significance and by 'electronic northern' representation, enabled us to identify a large number of novel genes predicted to be up- or down-regulated during either symbiotic root interaction. These in silico analyses provide a first global view of the genetic programs for root symbioses in M.truncatula. A searchable database has been built and can be accessed through a public interface.
Project description:BackgroundLegumes can establish on nitrogen-deprived soils a symbiotic interaction with Rhizobia bacteria, leading to the formation of nitrogen-fixing root nodules. Cytokinin phytohormones are critical for triggering root cortical cell divisions at the onset of nodule initiation. Cytokinin signaling is based on a Two-Component System (TCS) phosphorelay cascade, involving successively Cytokinin-binding Histidine Kinase receptors, phosphorelay proteins shuttling between the cytoplasm and the nucleus, and Type-B Response Regulator (RRB) transcription factors activating the expression of cytokinin primary response genes. Among those, Type-A Response Regulators (RRA) exert a negative feedback on the TCS signaling. To determine whether the legume plant nodulation capacity is linked to specific features of TCS proteins, a genome-wide identification was performed in six legume genomes (Cajanus cajan, pigeonpea; Cicer arietinum, chickpea; Glycine max, soybean; Phaseolus vulgaris, common bean; Lotus japonicus; Medicago truncatula). The diversity of legume TCS proteins was compared to the one found in two non-nodulating species, Arabidopsis thaliana and Vitis vinifera, which are references for functional analyses of TCS components and phylogenetic analyses, respectively.ResultsA striking expansion of non-canonical RRBs was identified, notably leading to the emergence of proteins where the conserved phosphor-accepting aspartate residue is replaced by a glutamate or an asparagine. M. truncatula genome-wide expression datasets additionally revealed that only a limited subset of cytokinin-related TCS genes is highly expressed in different organs, namely MtCHK1/MtCRE1, MtHPT1, and MtRRB3, suggesting that this "core" module potentially acts in most plant organs including nodules.ConclusionsFurther functional analyses are required to determine the relevance of these numerous non-canonical TCS RRBs in symbiotic nodulation, as well as of canonical MtHPT1 and MtRRB3 core signaling elements.
Project description:Medicago truncatula is a model for investigating legume genetics, including the genetics and evolution of legume-rhizobia symbiosis. We used whole-genome sequence data to identify and characterize sequence polymorphisms and linkage disequilibrium (LD) in a diverse collection of 26 M. truncatula accessions. Our analyses reveal that M. truncatula harbors both higher diversity and less LD than soybean (Glycine max) and exhibits patterns of LD and recombination similar to Arabidopsis thaliana. The population-scaled recombination rate is approximately one-third of the mutation rate, consistent with expectations for a species with a high selfing rate. Linkage disequilibrium, however, is not extensive, and therefore, the low recombination rate is likely not a major constraint to adaptation. Nucleotide diversity in 100-kb windows was negatively correlated with gene density, which is expected if diversity is shaped by selection acting against slightly deleterious mutations. Among putative coding regions, members of four gene families harbor significantly higher diversity than the genome-wide average. Three of these families are involved in resistance against pathogens; one of these families, the nodule-specific, cysteine-rich gene family, is specific to the galegoid legumes and is involved in control of rhizobial differentiation. The more than 3 million SNPs that we detected, approximately one-half of which are present in more than one accession, are a valuable resource for genome-wide association mapping of genes responsible for phenotypic diversity in legumes, especially traits associated with symbiosis and nodulation.
Project description:Mutualisms are known to be genetically variable, where the genotypes differ in the fitness benefits they gain from the interaction. To date, little is known about the loci that underlie such genetic variation in fitness or whether the loci influencing fitness are partner specific, and depend on the genotype of the interaction partner. In the legume-rhizobium mutualism, one set of potential candidate genes that may influence the fitness benefits of the symbiosis are the plant genes involved in the initiation of the signaling pathway between the two partners. Here we performed quantitative trait loci (QTL) mapping in Medicago truncatula in two different rhizobium strain treatments to locate regions of the genome influencing plant traits, assess whether such regions are dependent on the genotype of the rhizobial mutualist (QTL × rhizobium strain), and evaluate the contribution of sequence variation at known symbiosis signaling genes. Two of the symbiotic signaling genes, NFP and DMI3, colocalized with two QTL affecting average fruit weight and leaf number, suggesting that natural variation in nodulation genes may potentially influence plant fitness. In both rhizobium strain treatments, there were QTL that influenced multiple traits, indicative of either tight linkage between loci or pleiotropy, including one QTL with opposing effects on growth and reproduction. There was no evidence for QTL × rhizobium strain or genotype × genotype interactions, suggesting either that such interactions are due to small-effect loci or that more genotype-genotype combinations need to be tested in future mapping studies.