Project description:BackgroundAs SARS-CoV-2 vaccines are administered worldwide, the COVID-19 pandemic continues to exact significant human and economic costs. Mass testing of unvaccinated individuals followed by isolation of positive cases can substantially mitigate risks and be tailored to local epidemiological conditions to ensure cost effectiveness.MethodsUsing a multi-scale model that incorporates population-level SARS-CoV-2 transmission and individual-level viral load kinetics, we identify the optimal frequency of proactive SARS-CoV-2 testing, depending on the local transmission rate and proportion immunized.FindingsAssuming a willingness-to-pay of US$100,000 per averted year of life lost (YLL) and a price of $10 per test, the optimal strategy under a rapid transmission scenario (Re ∼ 2.5) is daily testing until one third of the population is immunized and then weekly testing until half the population is immunized, combined with a 10-day isolation period of positive cases and their households. Under a low transmission scenario (Re ∼ 1.2), the optimal sequence is weekly testing until the population reaches 10% partial immunity, followed by monthly testing until 20% partial immunity, and no testing thereafter.InterpretationMass proactive testing and case isolation is a cost effective strategy for mitigating the COVID-19 pandemic in the initial stages of the global SARS-CoV-2 vaccination campaign and in response to resurgences of vaccine-evasive variants.FundingUS National Institutes of Health, US Centers for Disease Control and Prevention, HK Innovation and Technology Commission, China National Natural Science Foundation, European Research Council, and EPSRC Impact Acceleration Grant.
Project description:The coronavirus disease 2019 (COVID-19) pandemic has created unprecedented challenges for solid organ transplant programs. While transplant activity has largely recovered, appropriate management of deceased donor candidates who are asymptomatic but have positive nucleic acid testing (NAT) for SARS-CoV-2 is unclear, as this result may reflect active infection or prolonged viral shedding. Furthermore, candidates who are unvaccinated or partially vaccinated continue to receive donor offers. In the absence of robust outcomes data, transplant professionals at US adult kidney transplant centers were surveyed (February 13, 2021 to April 29, 2021) to determine community practice (N: 92 centers, capturing 41% of centers and 57% of transplants performed). The majority (97%) of responding centers declined organs for asymptomatic NAT+ patients without documented prior infection. However, 32% of centers proceed with kidney transplant in NAT+ patients who were at least 30 days from initial diagnosis with negative chest imaging. Less than 7% of programs reported inactivating patients who were unvaccinated or partially vaccinated. In conclusion, despite national recommendations to wait for negative testing, many centers are proceeding with kidney transplant in patients with positive SARS-CoV-2 NAT results due to presumed viral shedding. Furthermore, few centers are requiring COVID-19 vaccination prior to transplantation at this time.
Project description:BackgroundThe world is facing a massive burden from the coronavirus disease 2019 (COVID-19) pandemic. Governments took the extraordinary step of locking down their own countries to curb the spread of the coronavirus. After weeks of severe restrictions, countries have begun to relax their strict lockdown measures. However, reopening will not be back to normal.Simulation facilities (SF) are training spaces that enable health professionals and students to learn skills and procedures in a safe and protected environment. Today's clinicians and students have an expectation that simulation laboratories are part of lifelong healthcare education. There is great uncertainty about how COVID-19 will impact future training in SF. In particular, the delivery of training activities will benefit of adequate safety measures implemented for all individuals involved.This paper discusses how to safely reopen SF in the post-lockdown phase.Main bodyThe paper outlines 10 focus points and provides operational tips and recommendations consistent with current international guidelines to reopen SF safely in the post-lockdown phase. Considering a variety of national advices and regulations which describe initial measures for the reopening of workplaces as well as international public health recommendations, we provide points of reflection that can guide decision-makers and SF leaders on how to develop local approaches to specific challenges. The tips have been laid out taking also into account two main factors: (a) the SF audience, mainly consisting of undergraduate and postgraduate healthcare professionals, who might face exposure to COVID-19 infection, and (b) for many simulation-based activities, such as teamwork training, adequate physical distancing cannot be maintained.ConclusionsThe planning of future activities will have to be based not only on safety but also on flexibility principles.Sharing common methods consistent with national and international health guidelines, while taking into account the specific characteristics of the different contexts and centres, will ultimately foster dissemination of good practices.This article seeks to further the conversation. It is our hope that this manuscript will prompt research about the impact of such mitigation procedures and measures in different countries.
Project description:Toxoid vaccines--vaccines based on inactivated bacterial toxins--are routinely used to promote antitoxin immunity for the treatment and prevention of bacterial infections. Following chemical or heat denaturation, inactivated toxins can be administered to mount toxin-specific immune responses. However, retaining faithful antigenic presentation while removing toxin virulence remains a major challenge and presents a trade-off between efficacy and safety in toxoid development. Here, we show a nanoparticle-based toxin-detainment strategy that safely delivers non-disrupted pore-forming toxins for immune processing. Using erythrocyte membrane-coated nanoparticles and staphylococcal ?-haemolysin, we demonstrate effective virulence neutralization via spontaneous particle entrapment. Compared with vaccination with heat-denatured toxin, mice vaccinated with the nanoparticle-detained toxin showed superior protective immunity against toxin-mediated adverse effects. We find that the non-disruptive detoxification approach benefited the immunogenicity and efficacy of toxoid vaccines. We anticipate that this study will open new possibilities in the preparation of antitoxin vaccines against the many virulence factors that threaten public health.
Project description:BackgroundVaccine is supposed to be the most effective means to prevent COVID-19 as it may not only save lives but also reduce productivity loss due to resuming pre-pandemic activities. Providing the results of economic evaluation for mass vaccination is of paramount importance for all stakeholders worldwide.MethodsWe developed a Markov decision tree for the economic evaluation of mass vaccination against COVID-19. The effectiveness of reducing outcomes after the administration of three COVID-19 vaccines (BNT162b2 (Pfizer-BioNTech), mRNA-1273 (Moderna), and AZD1222 (Oxford-AstraZeneca)) were modelled with empirical parameters obtained from literatures. The direct cost of vaccine and COVID-19 related medical cost, the indirect cost of productivity loss due to vaccine jabs and hospitalization, and the productivity loss were accumulated given different vaccination scenarios. We reported the incremental cost-utility ratio and benefit/cost (B/C) ratio of three vaccines compared to no vaccination with a probabilistic approach.ResultsModerna and Pfizer vaccines won the greatest effectiveness among the three vaccines under consideration. After taking both direct and indirect costs into account, all of the three vaccines dominated no vaccination strategy. The results of B/C ratio show that one dollar invested in vaccine would have USD $13, USD $23, and USD $28 in return for Moderna, Pfizer, and AstraZeneca, respectively when health and education loss are considered. The corresponding figures taking value of the statistical life into account were USD $176, USD $300, and USD $443.ConclusionMass vaccination against COVID-19 with three current available vaccines is cost-saving for gaining more lives and less cost incurred.
Project description:A 53-year-old male presents with cough, fever, and myalgias for 7 days. Vitals include temperature, 38.0°C; heart rate, 110; blood pressure, 118/70 mm Hg; respiration rate, 28; and oxygen saturation 83% on room air. His only past medical history is hypertension. Your community is in the midst of the coronavirus disease 2019 (COVID-19) pandemic. The patient is hypoxic but responds to oxygen supplementation with nasal cannula and a face mask. His chest x-ray demonstrates multifocal infiltrates. Are there any therapeutic agents currently available for COVID-19?
Project description:The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has elicited an equally rapid response aiming to develop a COVID-19 vaccine. These efforts are encouraging; however, comprehensive efficacy and safety evaluations are essential in the development of a vaccine, and we can learn from previous vaccine development campaigns. In this Perspective, we summarize examples of vaccine-associated disease enhancement in the history of developing vaccines against respiratory syncytial virus, dengue virus, SARS-CoV and Middle East respiratory syndrome coronavirus, which highlight the importance of a robust safety and efficacy profile, and present recommendations for preclinical and clinical evaluation of COVID-19 vaccine candidates as well as for vaccine design and optimization.
Project description:IntroductionAs of 3rd June 2021, Malaysia is experiencing a resurgence of COVID-19 cases. In response, the federal government has implemented various non-pharmaceutical interventions (NPIs) under a series of Movement Control Orders and, more recently, a vaccination campaign to regain epidemic control. In this study, we assessed the potential for the vaccination campaign to control the epidemic in Malaysia and four high-burden regions of interest, under various public health response scenarios.MethodsA modified susceptible-exposed-infectious-recovered compartmental model was developed that included two sequential incubation and infectious periods, with stratification by clinical state. The model was further stratified by age and incorporated population mobility to capture NPIs and micro-distancing (behaviour changes not captured through population mobility). Emerging variants of concern (VoC) were included as an additional strain competing with the existing wild-type strain. Several scenarios that included different vaccination strategies (i.e. vaccines that reduce disease severity and/or prevent infection, vaccination coverage) and mobility restrictions were implemented.ResultsThe national model and the regional models all fit well to notification data but underestimated ICU occupancy and deaths in recent weeks, which may be attributable to increased severity of VoC or saturation of case detection. However, the true case detection proportion showed wide credible intervals, highlighting incomplete understanding of the true epidemic size. The scenario projections suggested that under current vaccination rates complete relaxation of all NPIs would trigger a major epidemic. The results emphasise the importance of micro-distancing, maintaining mobility restrictions during vaccination roll-out and accelerating the pace of vaccination for future control. Malaysia is particularly susceptible to a major COVID-19 resurgence resulting from its limited population immunity due to the country's historical success in maintaining control throughout much of 2020.
Project description:RNA was extracted from whole blood of subjects collected in Tempus tubes prior to COVID-19 mRNA booster vaccination. D01 and D21 correspond to samples collected at pre-dose 1 and pre-dose 2 respectively. RNA was also extracted from blood collected at indicated time points post-vaccination. DB1, DB2, DB4 and DB7 correspond to booster day 1 (pre-booster), booster day 2, booster day 4 and booster day 7 respectively. The case subject experienced cardiac complication following mRNA booster vaccination. We performed gene expression analysis of case versus controls over time.