Project description:We compared the plasma miRNA expression profiles between healthy and GDM women by microarray analysis.Our study offers new insights into circulating biomarkers of GDM and thus provides a valuable resource for future investigations.
Project description:Diabetes mellitus (DM) after transplantation remains a crucial clinical problem in kidney transplantation. To obtain insights into molecular mechanisms underlying the development of post-transplant diabetes mellitus (PTDM) and its early impact on glomerular structures, here we comparatively analyze the proteome of histologically normal appearing glomeruli from patients with PTDM from normoglycemic (NG) transplant recipients, and from recipients with pre-existing type 2 DM (PTDM)
Project description:This SuperSeries is composed of the following subset Series: GSE21321: Blood microRNA profiles and upregulation of hsa-miR-144 in males with type 2 diabetes mellitus. GSE26167: MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in Type 2 Diabetes mellitus Refer to individual Series
Project description:Diabetes mellitus (DM) is a leading cause of chronic kidney disease and the pathobiology of diabetic nephropathy is widely studied. Less, however, is known about urinary bladder disease in DM despite dysfunctional voiding being a common clinical problem. We hypothesised that diabetic cystopathy would have a characteristic molecular signature, due to the adaptive response to increased urine load combined with the metabolic impacts of DM. To distinguish the consequences of DM from polyuria we compared bladders of untreated control, diabetic (streptozotocin-induced) and sucrose-treated male Wistar rats after 16 weeks using gene array
Project description:In this project, using discovery-based mass spectrometry approach and adopting data-dependent LC-MS/MS, we detected and identified modified peptides in complex clinical plasma samples and developed first-level biomarker verification strategy. Further, using liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM-MS) based targeted approach which virtually quantifies irreversible oxidation at any targeted cysteine, we quantified cysteine tri-oxidation in HSA in diabetes patients. Site-specific tri-oxidized HSA could be a potential biomarker of diabetes and provide directive of disease mechanism.
Project description:Neonatal Diabetes (ND) mellitus is a rare genetic disease (1 in 90,000 live births). It is defined by the presence of severe hyperglycaemia associated with insufficient or no circulating insulin, occurring mainly before 6 months of age and rarely between 6 months and 1 year. Such hyperglycaemia requires either transient treatment with insulin in about half of cases, or permanent insulin treatment. The disease is explained by two major groups of mechanism: malformation of the pancreas with altered insulin-secreting cells development/survival or abnormal function of the existing pancreatic ? cell. The most frequent genetic causes of neonatal diabetes mellitus with abnormal ? cell function are abnormalities of the 6q24 locus and mutations of the ABCC8 or KCNJ11 genes coding for the potassium channel in the pancreatic ? cell. Other genes are associated with pancreas malformation or insufficient ? cells development or destruction of ? cells. Clinically, compared to patients with an ABCC8 or KCNJ11 mutation, patients with a 6q24 abnormality have lower birth weight and height, are younger at diagnosis and remission, and have a higher malformation frequency. Patients with an ABCC8 or KCNJ11 mutation have neurological and neuropsychological disorders in all those tested carefully. Up to 86% of patients who go into remission have recurrent diabetes when they reach puberty, with no difference due to the genetic origin. All these results reinforce the importance of prolonged follow-up by a multidisciplinary pediatric team, and later doctors specializing in adult medicine. 90% of the patients with an ABCC8 or KCNJ11 mutation as well as those with 6q24 anomalies are amenable to a successful switch from insulin injection to oral sulfonylureas.
Project description:An explosion of work over the last decade has produced insight into the multiple hereditary causes of a nonimmunological form of diabetes diagnosed most frequently within the first 6 months of life. These studies are providing increased understanding of genes involved in the entire chain of steps that control glucose homeostasis. Neonatal diabetes is now understood to arise from mutations in genes that play critical roles in the development of the pancreas, of beta-cell apoptosis and insulin processing, as well as the regulation of insulin release. For the basic researcher, this work is providing novel tools to explore fundamental molecular and cellular processes. For the clinician, these studies underscore the need to identify the genetic cause underlying each case. It is increasingly clear that the prognosis, therapeutic approach, and genetic counseling a physician provides must be tailored to a specific gene in order to provide the best medical care.
Project description:Gestational diabetes (GDM) changes the maternal metabolic and uterine environment, thus increasing the risk of short- and long-term adverse outcomes for both mother and child. Children of mothers who have GDM during their pregnancy are more likely to develop Type 2 Diabetes (T2D), early-onset cardiovascular disease and GDM when they themselves become pregnant, perpetuating a multigenerational increased risk of metabolic disease. The negative effect of GDM is exacerbated by maternal obesity, which induces a greater derangement of fetal adipogenesis and growth. Multiple factors, including genetic, epigenetic and metabolic, which interact with lifestyle factors and the environment, are likely to contribute to the development of GDM. Genetic factors are particularly important, with 30% of women with GDM having at least one parent with T2D. Fetal epigenetic modifications occur in response to maternal GDM, and may mediate both multi- and transgenerational risk. Changes to the maternal metabolome in GDM are primarily related to fatty acid oxidation, inflammation and insulin resistance. These might be effective early biomarkers allowing the identification of women at risk of GDM prior to the development of hyperglycaemia. The impact of the intra-uterine environment on the developing fetus, "developmental programming", has a multisystem effect, but its influence on adipogenesis is particularly important as it will determine baseline insulin sensitivity, and the response to future metabolic challenges. Identifying the critical window of metabolic development and developing effective interventions are key to our ability to improve population metabolic health.