Ontology highlight
ABSTRACT: Background
Accumulating evidence implies that autophagy plays a critical role in breast cancer development and progression. It is crucial to screen out autophagy-related encoding genes (ARGs) with prognostic value in breast cancer and reveal their biological properties in the aggressiveness of breast cancer.Methods
Univariate and multivariate Cox proportional hazards analyses were used to identify a prognostic risk model of ARGs from The Cancer Genome Atlas (TCGA). Kaplan-Meier analysis, univariate and multivariate Cox regression analyses and receiver operating characteristic (ROC) curve analysis were performed to validate the risk model. Western blot and immunohistochemistry (IHC) were conducted to assess the expression of VPS35 (one of ARGs in risk model). CCK8, Colony formation assay, Transwell migration/invasion assays and autophagy flux assay were used to confirm biological function of VPS35 in breast cancer.Results
In this study, the prognostic risk model consisting of six ARGs (VPS35, TRIM21, PRKAB2, RUFY4, MAP1LC3A and LARP1) in breast cancer were identified. The risk model was further verified as a novel independent prognostic factor for breast cancer patients. We also clarified that vacuolar protein sorting-associated protein 35 (VPS35), one of ARGs in the risk model, was upregulated in breast cancer samples and cell lines. VPS35 overexpression was correlated with more aggressive phenotype of breast cancer and indicated worse prognosis in both progression-free survival and overall survival analyses. Meanwhile, VPS35 knockdown inhibited breast cancer cell proliferation, migration and invasion, suggesting that VPS35 promoted the progression of breast cancer. VPS35 silence also influenced autophagy process, indicating that VPS35 was essential for autophagy completion.Conclusion
Taken together, the six ARGs risk model has a remarkably prognostic value for breast cancer. Among them, VPS35 might exert as a significant oncogenic and prognostic factor for breast cancer and could be a promising autophagy-related therapeutic target in clinical practice.
SUBMITTER: Li X
PROVIDER: S-EPMC8130280 | biostudies-literature |
REPOSITORIES: biostudies-literature