Ontology highlight
ABSTRACT: Objectives
In this study, we investigated the possible analgesic effects of Botulinum toxin type A (BoNT/A) on trigeminal neuralgia (TN). A modified TN mouse model was established by chronic constriction injury of the distal infraorbital nerve (dIoN-CCI) in mice, and the possible roles of microglia toll-like receptor 2 (TLR2) and neuroinflammation was investigated.Methods
Male C57BL/6 mice were divided into 3 groups, including sham group, vehicle-treated TN group and BoNT/A-treated TN group. Bilateral mechanical pain hypersensitivity, anxiety-like and depressive-like behaviors were evaluated by using von Frey test, open field, elevated plus-maze testing, and forced swimming test in mice, respectively. The mRNA or protein expression levels of toll-like receptors (TLRs), glia activation markers and proinflammatory factors in the trigeminal nucleus caudalis (TNC) were tested by RT-qPCR, immunofluorescence and Western blotting. We also tested the pain behaviors of TN in Tlr2-/- mice.Results
We found that unilateral subcutaneous injection of BoNT/A into the whisker pad on the ipsilateral side of dIoN-CCI mice significantly attenuated bilateral mechanical pain hypersensitivity and anxiety-like behaviors induced by dIoN-CCI surgery in mice. The dIoN-CCI surgery significantly up-regulated the expression of TLR2, MyD88, CD11b (a microglia marker), IL-1β, TNF-α and IL-6 in the ipsilateral TNC in mice, and BoNT/A injection significantly inhibited the expression of these factors. Immunostaining results confirmed that BoNT/A injection significantly inhibited the microglia activation in the ipsilateral TNC in dIoN-CCI mice. TLR2 deficiency also alleviated bilateral mechanical pain hypersensitivity and the up-regulation of MyD88 expression in the TNC of dIoN-CCI mice.Conclusion
These results indicate that unilateral injection of BoNT/A attenuated bilateral mechanical pain hypersensitivity and anxiety-like behaviors in dIoN-CCI mice, and the analgesic effects of BoNT/A may be associated with the inhibition of TLR2-mediated neuroinflammation in the TNC.
SUBMITTER: Chen WJ
PROVIDER: S-EPMC8130347 | biostudies-literature |
REPOSITORIES: biostudies-literature