Unknown

Dataset Information

0

Early nucleolar responses differentiate mechanisms of cell death induced by oxaliplatin and cisplatin.


ABSTRACT: Recent reports provide evidence that the platinum chemotherapeutic oxaliplatin causes cell death via ribosome biogenesis stress, while cisplatin causes cell death via the DNA damage response (DDR). Underlying differences in mechanisms that might initiate disparate routes to cell death by these two broadly used platinum compounds have not yet been carefully explored. Additionally, prior studies had demonstrated that cisplatin can also inhibit ribosome biogenesis. Therefore, we sought to directly compare the initial influences of oxaliplatin and cisplatin on nucleolar processes and on the DDR. Using pulse-chase experiments, we found that at equivalent doses, oxaliplatin but not cisplatin significantly inhibited ribosomal RNA (rRNA) synthesis by Pol I, but neither compound affected rRNA processing. Inhibition of rRNA synthesis occurred as early as 90 min after oxaliplatin treatment in A549 cells, concurrent with the initial redistribution of the nucleolar protein nucleophosmin (NPM1). We observed that the nucleolar protein fibrillarin began to redistribute by 6 h after oxaliplatin treatment and formed canonical nucleolar caps by 24 h. In cisplatin-treated cells, DNA damage, as measured by γH2AX immunofluorescence, was more extensive, whereas nucleolar organization was unaffected. Taken together, our results demonstrate that oxaliplatin causes early nucleolar disruption via inhibition of rRNA synthesis accompanied by NPM1 relocalization and subsequently causes extensive nucleolar reorganization, while cisplatin causes early DNA damage without significant nucleolar disruption. These data support a model in which, at clinically relevant doses, cisplatin kills cells via the canonical DDR, and oxaliplatin kills cells via ribosome biogenesis stress, specifically via rapid inhibition of rRNA synthesis.

SUBMITTER: Sutton EC 

PROVIDER: S-EPMC8131322 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5386361 | biostudies-literature
| S-EPMC3095603 | biostudies-literature
| S-EPMC10499794 | biostudies-literature
2017-05-11 | PXD003543 | Pride
| S-EPMC3583754 | biostudies-literature
| S-EPMC4292417 | biostudies-other
| S-EPMC9749789 | biostudies-literature
| S-EPMC3990471 | biostudies-literature
| S-EPMC7066845 | biostudies-literature
2019-06-01 | GSE125002 | GEO